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INTRODUCTION

This report details results of research performed during the period April 1, 1992
through September 30, 1994 under NASA contract no. NAG-1-1407.

The general objective of this research has been to construct a model capable of
predicting the damage development caused by out-of-plane static loading in laminated
graphite/epoxy composite plates.

SUMMARY OF COMPLETED RESEARCH
The following is a summary of research completed during the contract period:

1) a cohesive zone model has been developed for predicting delamination
growth in thermoset composites;

2) the cohesive zone model has been shown to be thermodynamically
acceptable and consistent with the continuum mechanics approach to fracture
prediction;

3) the cohesive zone model has been implemented to a finite element computer
algorithm developed specifically for use under this contract;

4) preliminary predictions have been made with the model;

5) preliminary experiments have been performed as a means of model
verification; and

6) the model predictions have been compared favorably to experimental
results.

The results reported above are documented in Appendix A.
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Modeling the Progressive Failure of Laminated
Composites with Continuum Damage
Mechanics

REFERENCE: Lo, D. C,, Allen, D. H., and Harris, C. £, “Madeling the Progressive Failure of
Laminated Composites with Continuum Damage Mechaanics,” Fracture Mechanics: Twenty-
Third Symposium. ASTM STP 1189, Ravinder Chona, Ed., American Society for Testing and
Matenals, Phiadelphaa, 1993, pp. 680-695.

ABSTRACT: A continuum-damage-mechanics-based model is proposed for the analysis of the
progressive failure process in laminated composite structures. The laminate’s response is deter-
minced by nonlinear constitutive equations that account for each type of matrix-dominated dam-
age through strain-like internal state variables. Evolution of these internal state vanables is gov-
erned by the damage-dependent ply-level stresses. The updated damage state and the ply-level
stresses arc then employed in the local-global evaluation of component failure. This model is
incorporated into a finite-clement analysis code to facilitate the examination of structures with
spatially varying stress fields. The stress and damage distribution obtained from the analysis at
vanious points in the loading history provide information about the progression of events leading
to the failure of the component. The progressive failure of fatigue-loaded rectangular crossply-
laminated plates containing a centered circular cutout has been examined with the model. Most
of the predicted damage is localized in a region near the cutout. Rather than propagating out- .
ward, the damage intensifies in this region until failure occurs. The feasibility of modeling the
cvolution of cach type of subcritical damage is demonstrated with the current framework. This

ability to simulate the progressive failure process at this level of detail will assist in the design of
safer and more efficient composite structures.

KEY WORDS: laminated composites, progressive failure, matrix damage, continuum damage

mechanics, finite-element analysis, damage accumulation, fracturc mechanics, fatigue
(matenals)

The accumulation of subcritical damage in laminated composites is of major concern espe-
cially in hight of the increased use of these advanced material systems in critical engineering
applications. Although in some instances distributed damage can retard the failure process in
a component by redistributing load away from the high stress region, it is still the primary
contributing factor to the eventual catastrophic failure. While efforts can be made to delay the
development of damage by modifying the laminate stacking sequence or the component
design, distributed damage is present throughout the life of the component. Even before enter-
ing service, damage is inflicted on the component by the manufacturing process.

To produce safe and reliable laminated composite components, it is essential 10 know how
such damage affects the performance and failure of these componcnts. Experimental
approaches are not economical due to the large numbers of parameters that can be varied by
the designer. Thus, much effort has been placed on the development of analytical methods to

! Graduate research assistant and director, respectively, Center for Mechanics of Composites, Acro-
space Eagineering Department, Texas A&M University, College Station, TX 77843-3141.

! Head. Mcchanics of Materials Branch, NASA Langlcy Rescarch Center, Hampton, VA 23665-5225.
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supplemient the desipner’s databiae

Fo accomplish this task requires a thorouph knowledpe
of the fatlure char;

icterisucs of laminated composites as well as the
this failure process.

"The progressive nature of the failure process in laminated composites has been well docu-
mented in the published literature [/-4]. This process involves the accumulation of several
types of damage. Generally, the firsg type of damage to appear is matrix cracking in regions of
high stress gradients. Along the free edges and at the intersection of matrix cracks from adja-
cent plics, delaminations are propagated by large intralaminar stresses. The st ress redistribu-
tion resulting from these two types of damage in turn assist in the development of damage in
the surrounding areas. As matrix-dominated damage accumulates, the loads are transferred 1o
the plies with fiber orientation aligned closest to the direction of the applied loads. The bonds
between the fibers and matrix are fractured in these plies. This is accompanied by the fracture
of the fibers. Since the reinforcing fibers are the primary load-carrying component of the lam-

inate, their fracture signifies the imminent failure of the structure itself. This failure process is
in contrast to that observ

ed in conventional homogeneous materials where failure can be
‘traced (o the propagation of a single flaw. In composites, each flaw in the laminate will not
greatly affect the overall response of the structure; instead, it influences the development of
other flaws. It is the cumulative effect of the subcnitical damage that results in the failure of the
structure. Thus, any attempt to predict the residual strength and life of laminated composite

structures must address the damage accumulation process as well as its effect on the response
of the matenal.

ability to analyucally model

Most analyses have not adequately accounted for this history-dependent subcritical damage
accumulation process. Some linear elastic fracture mechanics based approaches replace the
distnibuted damage with a single equivalent macrocrack [5.6]. When the stress intensity factor
or the strain energy release rate is equal to the fracture toughness, failure occurs. Other

approaches calculate the stress field with the assumption of no accumulated damage. To com-

pensate for the stress redistribution, the failure criteria are either evaluated at a distance away

[from the stress concentrator or are evaluated using the stresses that are averaged within this -
region {7-9]. A limitation of these approaches lies in the determination of the equivalent
macrocrack size or the evaluation zone. Analytical expressions are not provided to relate the
distributed damage 10 the equivalent geometric properties. Instead, these values are selected
to correlate with experimental data and thus are restricted to similar geometries and loading

histories /0]. Ofien these values that are supposed to describe the evolving damage state are
assumed to be constant throughout the failure process. Furthermore, in light of the increasing
inhomogeneity with damage accumulation,

these indirect approaches 10 the accounting of
subcnitical damage do not provide sufficient information to predict accurately the evolution
of the damaged region and the eventual failu

re of the component.
Ply discount methods have also been

method have to be cmployed for typical d

stress fields. cach flaw is modeled by a large number of clements. The stress ficlds arc then used

in the failure criterions 1o determine the initiation and propagation of cach flaw. 1t is necessary
o update the finite-clement model as the damage state evolves. This type of analysis, unfor-
tunately, can rapidly become computationally untenable since a component may
many interacting flaws before failure occurs.

The requirement for inform

amage configurations [/ /-16]. To obtain accurate

y accumulite

aton concerning the subceritical damage accumulation and the
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desire for o wactable analvas scheme have prompted the use of the contiuum-damagce-

mechanmes approach w e anatvsis of progressive failure in Linmunated composite structures
1417-20]. the size and distabution of the subceritical damage found 1 Lininated composites
cuable the sclecuon of a representative volume element {(RVE)ol material th

atissmallin scale
relative to the steucture, but is of suthicient size (o characterize the damay

e contaned within
by staustically averaged quantitics. These averaged quantities, known as internal state vari-
ables. describe the physicat attributes of cach mode off damage. The resulting efiects of the
distnibuted damage arc then reflected in the constitutive rclationship through the internad state
vartables. Therclore, o medium containing a multitude of small internal cracks can be ana-
fyzed as a continuum without internal boundarics. Duc 1o the nonlinear nature of the consti-
tutive cquations, this type of analysis is approached numerically by methods such as finite
clements. This homogenizaton of the subcritical damage climinates the task of modching indi-
vidual flaws: but since the homogenization is performed at a scale that is small with respect 1o
the structure, the results arce of suflicient resolution 16 provide an indication of the damage
accumulation and stress redistribution.

A progressive failure model incorporating the continuum-damage-mechanics approach to
model-matrix-dominated damage has been under development by the authors [2/-26]. The
model’s capability to predict the development of matrix cracks under tension-tension fatigue
loading conditions is used to examine the development of damage in composite laminates.
The information obtained is then used to predict the failure of the component.

Progressive Failure Model

The proposed progressive failure model consists of three components. The first is the non-
linear constitutive relationships derived using continuum damage mechanics. Next is the
structural analysis algorithm incorporating the aforementioned constitutive relationships,
and, finally, failure critenia to indicate the catastrophic failure of the structure: Duc to the pro- -
gressive nature of the failure process, these componentsare employed in a time
ner to evaluate the stress state and damage evolution throughout-the loadi
results obtained at each step are then used to update the model for the next st
history. The following sections will first present the essential aspects of each ¢
progressive failure model. These components will then be assembled in an a

form the progressive failure model. More in-depth discusstons on these co
found in the published literature [21-26].

-slepping man-
ng history. - The
cpin the loading
omponent of the
nalysis scheme to
mponents can be

Damage-Dependent Constitutive Relationships

The damage-dependent constitutive relationships form the foundation of this progressive
fatlure model. These relationships determine the stress-strain response in the presence of inter-
nal damage as represented by the internal state variables. Within the framcwork of continuum
damage mechanics, the rate of change of these internal state variables is calculated from his-
tory-dependent damage-evolution laws. Thus, in the course of the analysis, both the changes
in the stress state as well as in the damage state are determined. The probable focation and
mode of failure can then be inferred from these results ealculated at sequential points in the
loading history. The principles of continuum damage mechanics further require the se
of local volume clements in which homogenization is pecformed. For matrix crackit
volume can be specified at the ply level. This selection of the local volume serves as the logical
butlding block tn this analysis. The model of a composite laminate citn then be formed by

assembling these building blocks together. By also developing damage evolution |
ure funcuons 1o be applicable at the ply

lection
1g, this

aws and fail-
tevel, the formulation becomes idependent of the
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Linunation geometry. The eelative scale and location of occurence of debmmnaiion dan: TS
preclude s specdication at the ply level it s istead itroduced at the Gonrnsae level, 1o me un-
Lo the peometanie mdependence of the model, 2 set of ditmape-dependent Limnation equa
uons with modilications to accommodate the eflects of the delamination damage isemployed

The kinematie efiects of the matnx cracks and delaminations are quantificd by the internal
state vartables used in this model. Matrix cracking is measured by the volume aver: iped dyadic

product of the crack Lace displacement, i, and the erack face normul, M, as proposed by Vak-
ulenko and Kachanov {27]

-
= undsS (n

where «,) 15 the second-order tensor internal state variable, F, 15 the local representative vol-
ume in the deformed state, and S is the crack surface area. This product represents the aver-
aged kinematics of the crack faces and can be interpreted as additional strains incurred by the
matcrial as a result of the internal damage. Since the internal state variable is a second-order
tensor, it is capable of modeling all three kinematic modes of crack face displacement. From
micromechanics, it has been found that the effects of the matrix cracks can be introduced into
the ply-level constitutive equations as follows [ 28]

{od = [QNec — «ff) (2

where ¢, arc the locally averaged components of stress, [Q] is the ply-level transformed stiff--
ncss matrix, €, are the locally averaged components of strain, and «i' are the components of -
the internal state variable for matrix cracking. Since interlaminar delaminations are not sta-
tistically homogencous through the laminate thickness, their effects cannot be homogenized
at the ply level like the matrix cracks. The effects of the delamination are modeled instead
usingan RVE at the laminate level. The presence of interply delaminationsin a laminate intro-
duces jump discontinuities in the displacement and rotation of the normal line io the mid-

plane of the plate. The Kirchhoff-Love hypothesis is thus modified 1o account for these dis-
continuitics at the damage interfaces as shown here {29]

t(xp.z) = w(xy) — z [+ H(z — z)B°) + H(z — z)u” (3)
wxp,z) = 0(xy) — z[n® + H(z — z)af] + H(z — z)0? (4)
Wxp,2) = W(xy) + H(z — Z)w? ()

where o, u", and w’ arc the midplane displacements; 8° and n* are thc ply rotations;

u?, vf, and w?, are the ply jumpdisplacement due to delamination- B? and 5! are the ply jump
rotations duc to delaminations; and H(z — z,) is the Heavyside step function. These displace-
ment equations arce averaged over a local area to produce locally averaged displacements. The
cesults are then used in the calculation of the average strains via the ply lcvel constitutive rela-

tionship shown in Eq 2. [ntegrating these ply stresses through the thickness of the laminate will
produce the following damage-dependent lamination equations

{N) L (Qllzi — 2.0 {er) — % Z (Ql(zi — Zi-.)('\"l'_) 1 Z [Ql]:l.{“”),

L= R R |
d

+ 3 (Oz = 2 M) = ST HOWG = m N (6)

L=t
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where Vs the component of the sesultant force per unit length; A s the component of the
resultant moments per unit fength; 4 is the number of plicsin the laminate: ¢ and «§ arc com-
poacats of the midplanc strains and curvatures; [ Q). is the clastic modulus matrix for the &
ply i lamunate coordinates; {a*'), contains the matrix cracking internal state variables for the
K™ ply: d 1s the number of delaminated interfaces: and {Q)], arc the weight-averaged stiffness
matrices of the sublaminate associated with the ™ delaminated interface {26]. This sublami-
nate 1s composed of the ply directly above and below the delaminated interface. £, 1s the thick-
ness of this sublaminate. {«”}, are components of the delamination damage internal state vari-
able, which includes components for crack face displacements and rotations, for the ™
defaminated interface. These delamination internal state variables are defined in a similar
manner as for matnx cracking. However, the local volume is now specified at the sublaminate
level. The effects of the internal damage are accounted for by the last three terms on the right-
hand side of Eqs 6 and 7, the first two representing the contribution from delamination and
the last term from matrix cracking. These terms can be viewed as “damage induced™ forces
and moments whose application to the undamaged material will produce midplane strain and
curvature contributions equivalent to those resulting from the damage-induced compliance
increase. [f no damage were present, these equations would reduce to the elastic lamination
equations.

The internal state variables for the matrix cracks and delaminations can be determined
either from experimental data [22,28] or damage evolution equations {30]. The former
method requires prior knowledge of the damage state in the structure. Since the objective of
this research effort is to predict the accumulation of damage and its effect on the structure,
damage evolution equations are used in this model. These relationships describe the rate at
which the internal state variables are changing in the R VE and are functions ofonly the current
state at each locally averaged material point. The damage state at any point in the loading
history is then found by integrating the damage evolutionary laws. For symmetric crossply
laminates subjected to uniaxial loading conditions, the predominant type of damage is the
Mode I opening intraply matrix crack. [t is assumed that all the crack surfaces are oriented
perpendicular to the plane formed by the ply. Thus, matrix damage 1n cach ply can be char-
actenzed by only one component of the damage tensor. This component, .o, is associated
with the displacement of the crack face in a direction parallel to the crack face normal. Based
on the observation that the accumulation of matrix crack is related to the strain energy release
rate, G, in a power law manner [3/ ], the authors have proposed the following évolutionary
relationship for this component of the damage tensor when the load is applicd cyclically [30]

M
dalt = d;S“ KG*dN (8)
where the term daldi/dS reflects the changes in the internal state varable with respect to
changes in the crack surfaces. This term is calculated analytically from a relationship describ-
ing the average crack surface displacements in the pure opening mode (Mode 1) for a medium
contatning alternating 0° and 90° plics [ 28]. It has been found that for typical brittle graphite/
€poxy matcnal systems das3/dS varied little with damage when subjected to fatiguce at constant
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load levels. Therelore, dadi/ds s assumed to be mdependent of the number of matriy cracks
i the ply. This approximation leaves the component of the fuar-ficld load normeal to the crack
surface and the fayer thickness as the determming factor for the value of o, S dS (s the strain
energy cclease rate caleulated from the ply-level damage-dependent stresses. The nulerial
parameters, A and 7, are phenomenological in nature
mental data. For the preseat model, & and 7 are determined from the damage lustory of 4 [Oy
90,], AS4/3502-6 graphite/epoxy laminate fatiguc loaded at a maximum stress amplitude of

296.5 MPa and a cycle ratio of 0.1 as reported by Chou et al {37,
found to be

and must be determined from experi-

The paramceters have been

k=442, =639 %)
for this material system. Because £

and 11 are assumed o be material paramcters, the values
determinced from onc laminate stac

king scquence should be valid for other lamunates as well.
This has been found 1o be accurate for crossply laminates with varying numbers of transverse
plies and stress amplitudes [32]. Further tnvestigation of other laminate stacking sequences
will be required to determine whether this assumption is valid for noacrossply layups. Since
the interactions with the adjacent plies and damage sites are implicitly reflected in the calcu-
lation of the ply-level cesponse through the laminate-averaging process, Eq 8 is not restricted
toa particularlaminate stacking sequence. Thus, both the transverse matnx cracking and axial

splits in a crossply laminate subjected to tensile cyclic loading conditions can be modeled with
the same equation.

Structural Analysis Algorithm

To incorporate the damage-dependent laminate constitutive relationship into a finite
ment formulation, the damage-dependent force and moment resultants, Eqs 6 and 7, are sub-
stituted into the plate equilibrium equations. The restriction 10 symmetnic laminate stacking
sequence is taken to simplify the formulation. This assumption produces a zero coupling stiff-
ness matrix and results in uncoupled governing differential equations. These governing differ-
cntial equations are integrated against variations in the displacement components to produce
aweak formulation of the damage-dependent laminated plate equilibrium equations. The cur-
rent algonthm uses a three-node tnangular element with five degrees of freedom at each node;
this consists of two in-plane displacements, one out-of-plane displacement, and two out-of-
plane rotations. This element is formed by combining a constant strain tnangular clement and
a nonconforming plate bending element. Corresponding displacement interpolation func-
tions are substituted into the weak formulation of the plate equilibrium equations to produce
the following equilibrium equations in matrix form [33]

-ele-

K" K2 ¢ u F! Fi, FY
K K2 ¢ v =4{Fit +4{F,} + F (10)
0 0 K® 3 F} F, F3

where [K] is the element stiffness matnx, {8} contains the out
tions, {F,) is the applied force vector, and {Fu} and {
tors resulting from matrix cracking and delaminati
damage now appear on the night-haad side of the cquilibrium cquations as damage-induced

force vectors. This representation climinates the need o recalculate the clemental stiffness
matrices cach time the damage state evolves, thus saving much computational time.

-of-plane displacement and rota-
Fyp} are the “damage-induced™ force vee-
on, respectively. The effects of the internal



HHH FHACTURE MECHANICS TWENTY THIRD SYNMPOSIUM

Peiliove Crgrenice

e objective of the fdure eriteri is to evaluate the stracturl ety of the component
usinyg, the current stress and damage states calculated by the model. his eatads the examina-
ton of the falure process at both the local materiat level and the global structural fevel because
the nlure at one material point may create stress redistributions that can cause simultancous
falure i the surrounding regions. Typical failure du ring tensite conditions is signaled by fiber
friacture in the principal foad carrying plics of a1 multidicectional Luminate, This is evaluated
by the following criterion

Lo = ey, (1)

where ¢, 1s the average ply level strain in the fiber direction and ta, 15 the tensile fature strain
measured from a umidirectional laminate. After failure has been declared, the ply no longer
can support additional foad. The current analysis considers this condition as the failure of
componcnt. In situations where the failure process is permitied o progress bevond the first
fiber fatlure, the stability of the failure process is evaluated at the global level. The stress state
for the entire structure with the updated damage is recalculated using the current loading con-
dition. Local laminate failure is evaluated once again in the structure. If it has been determined
that additional laminate failure has not occurred, then the failure process is stable and the
analysis is continued to the next increment of loads. On the other hand. new local laminate
fatlure would indicate an unstable fracture process and signals the initiation of global failure.
Thus local-global procedure forms the failure evaluation of the progress failure model. Other

modes of failure can be included in the evaluation by the application of the appropniate critenia
at the local level of the analysis.

Progressive Analysis Scheme

The aforementioned components are assembled together as shown in Fig. 1 to form the pro-
gressive failure model. In a typical analysis, the applied loads and initial damage state are
entered into the damage dependent constitutive relationships to determine the effective dam-
age-induced forces. These resultant damage forces along with the applied forces are used in the
structural analysis algorithm to calculate the global structural response. The results are once
again sent to the constitutive relationships where the local stress/strain response is obtained.
The changes in the damage state are also determined at this stage by the damage evolutionary
relationships using the local ply stresses. The failure criteria are evaluated locally with the
updated damage state; if failure has occurred, global failure is examined. Next, the entire pro-

cess 1s repeated for the next load step. This model is coded into a computational program to
facilitate the analysis of engineering structures.

Numerical Results and Discussion

The proposed progressive failure model is employed to examine the residual life of crossply
laminated plate subjected to fatigue loading conditions. A circular cutoul is placed at the cen-
ter of the plate to produce stress gradients that are conducive 10 the growth of subcritical dam-
age. This configuration is similar to those used to model fastener holes found in many com-
posite structures. Thus, by examining how the stresses are redistributed and damage
accumulates near the fastener hole, information can be gathered 1o determine the menits ofa
particular design. The dimensions of the rectangular plate used in this study are 25.4 by 50.8

mm. The cirealar cutout has a diameter of 6.4 mm. A cyclic tensile toad is applied at the nar-
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row cnd of the plate. Due to symmetry about the length and width of the plate, the finite-
clement mesh represents a quarter of the plate. It is discretized into 90 three-node triangular
clements, asshown in Fig. 2. The plate has a {0/90,], laminate stacking sequence. The material
propectics, shown in Table 1, for AS4/3501-6 graphite/epoxy have been used in the calcula-
tion. The fatiguc load is applicd at a cycle ratio of 0.1 and follows the maxinmum stress lustory
shown i Fig. 3. The first 50 cycles consist of the ramp up to the test load. Thisis done in part
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FIG. 2—Finite-element mesh of plate with circidar cutout.

to control the incremental changes to the damage state during the initial portion of the loading
history. [n this simulation, matrix cracking is assumed to be the only form of damage mode
and because of the crossply stacking sequence, component failure is assumed to occur at the
first fiber fracture in the 0° plies.

The predicted accumulation of matrix crack damage in the 90°
maximum stress of 184.0 MPa is shown in Fig. 4. The amount of d

TABLE | —Ply-level material propertics for AS4/3501-6 used in

simulation.

£y
£y
G
Uiy
Un
’n‘y

!
Cifen

GrowTit LAW PARAMETERS

146.9 GPa
10.4 GPa

4.3 GPa

0.26

0.42

0.128 mm

15 000 pstrain

442
6.39

plies of a pancl loaded at a
amage is expressed in terms
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FIG. 3—Maximum fatigue stress history used in simulation (R = 0.1 ).

of the volume-averaged crack face displacement as defined by Eq [. At the end of the load
ramp up, matrix damage has developed throughout the plate. The greatest damage being
located near the notch. This region of high damage gradient expands outward after 1550
cycles. The amount of damage also increases in the rest of the plate. However, after 7550
cycles, much of the damage evolution emanates from the region adjacent 1o the notch. This
shiftin the damage evolution reflects the load redistribution occurring inside the laminate. The
corresponding axial stress history for the 0° plies is shown in Fig. 5. The effects of the damage
growth that occurs between 50 and 1550 cycles can be seen by the increase in stress near the
notch. The interesting changes in the stress distribution beyond this point in the loading his-
tory are not discernible from the stress contour plots; but examination of the numerical data
indicates load transfer taking place in a confined area adjacent to the notch. This decelerated
change in the stress distribution is in part due to the small fraction of the total load initially
carried by the 90° plies. Any loss in the load carrying capability in the 90° plies will translate
tosmall changes in the stress state in the 0° plies. The accumulation of damage further reduces
the load available for transfer. However, a sufficient amount of load is transferred o the 0°
plies to cause fiber fracture and component failure after 7634 cycles. During the life of the
plate, the greatest accumulation of matrix damage is located at a region adjacent to the notch.
Rather than expanding outward, the damage intensifies in this region until first fiber failure in
the 0° plies. This behavior has also been predicted by Chang et al. [34] in crossply laminates
subjected to monotonically increasing tensile loading conditions.

The predicted cycles to first fiber failure at various maximum fatigue stress levels are shown
in Fig. 6. At the higher stresses, the load redistribution progresses rapidly from the formation
of the high-damage gradient zone to the failure of the first fiber. This indicates a sufficient
amount of energy was available after the formation of this zone to produce this result. At lower
applied stresses, a large portion of the available energy is expended during the formation of the
damage zone. Therefore, the intensification stage spans over a relatively high number of
fatigue cycles. The increasc in the number of cycles to failure from decreasing the applied stress
at the lower stress levels is large. Decreasing the applied stress from 185.7 to 183.4 MPa
increascs the cycles to failure by more than 100 000 cycles. A possible cause for this response
ts related to the amount of load redistribution taking place inside the faminate. Recall that
these predictions are based on the assumption that matrix cracking is the only type of matrix-
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FIG. 6—Predicted cycles to first fiber failure of fatigue-loaded plate with a circular cutout.

dominated damage present. The inclusion of delamination damage into the analysis will alter
the stress redistribution and damage accumulation. Its effects will be most apparent at the
lower stress levels where the delamination damage can 1nitiate and accumulate before fiber
failure occurs. The number of fatigue cycles required for first fiber failure at these stress levels
will decrease due to the additional source of load redistribution. Since the stress redistribution
and damage formation are coupled, additional analysis and experimental verification would

be required before any quantitative conclusions can be drawn about effects of including

delamination damage. However, it would enable the current progressive failure analysts

framework to capture a more complete picture of the complex interactive process and enhance
the model predictions.

The type of information obtained from the simulation could be potentially very useful to
the designer or analyst. The ability to locate critical regions and to track the evolution of dam-
age in these regions would allow designers to create safer and more efficient components. Alter-
nately, a damaged region detected in a component can be characterized and then entered into
the model to determine its effect on the residual responses so that it can be removed from
service at the appropriate time. The proposed model demonstrates the feasibility of the con-
tinuum-damage-mechanics approach. Further developments are in progress to achicve the
capabilities for analyzing more complex damage states.

The current analysis assumes component failure 10 occur at the first fracture of fibers in the

principal load careying plics. This assumption is valid in narrow specimens where there is not

sullicient area to redistribute the tensile loads within these plics. In wader specimens, global
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fracture can be stable . thus, the nrogressive Glure process extends bevond the fuest tiber {adure.

Theeelore, the Tull implementation of the matrix-dominated damuge evolution iws and the
imtroduction of fibee fracture internal state variables and growth Loy

s are futuce objectives of
the rescarch effort.

Fhus wll be followed by the modchng of compressive faiture maodes.

Counclusion

The use of continuum damage mechanics in the progressive Calure model provides an cffi-
cient mcans of modecling, distributed damage found in laminated composites. |
damage is represented by a setof strain-like internal state variables. The mtern
evolve with the accumulation of damage at each material pomt. These valucs
damage cvolution relationships that are functions of the current state ofthe m
all the damage present. Since the formulation permits the gradual

Zach wype of
al state vanables
are predicted by
aterial including

accumulation of damage
and the concurrent growth of different damage types, the analysis reflects the events occu rrng

inside the laminate. The current framework operates in a time-stepping manner where the
stress distribution and damage accumulation predicted at each step are cmployed tn the local-

global structural integrty evaluation. This ability to simulate the progressive failure process
will enhance the design and maintenance of laminated com
dependence on experimental support.

Even though continuum damage mechanics is suited for the examination of damages that
are distributed in nature and fracture mechanics is applicable for the evaluation of well-defined
macrocracks, there are situations that require the incorporation of the two approaches. One
such case is the existence of a sharp notch in a composite laminate. In this instance, a damage
zone containing many distributed microcracks will develop ahead of this notch when load is
applied. To account for the stress redistribution in this zone, continuum mechanics can be
used to determine the state of the material. These results can then be cvaluated on the global
scale using fracture mechanics. Thus, rather than choosing one method over
should be viewed as integral uaits in the failure analysis of laminated composi

posite structures by reducing the

the other, they
te structures.
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Abstract. The results of the so-called encrgetic approach to {racture for the cases of a sharp crack without and with a
cohesive zone are bricflv reviewed with particular attention to the crack uip singularity analysis and to the issuc of
energy dissipation due 1o crack propagation. The case of a crack with a cohesive zone removing all thermomechanical
singulanties is then further analyzed, focusing the attention on the question of the thermodynamic admissibility of
subcritical crack growth. and on some of the hypotheses that lead to the derivation of subcritical crack growth laws. A

two-phase cohesive zone modecl for discontinuous crack growth is presented and its thermodynamics analyzed, followed
by an example of its possible application.

1. Introduction

Subcritical crack growth (SCG), under both general and cyclic loading conditions, is a
phenomenon that has been receiving more and more attention during the last forty years.
Starting with early investigations mainly on fatigue in metals [ 1-9], current research covers a
wide variety of materials, especially those such as polymers [9-13] and ceramics [14] that are
becoming important in the fabrication of composites. The phenomena of interest also include
phase transformation toughening and discontinuous crack propagation in polymers, R-
toughening by crack bridging in ceramics and interface evolution and -degradation both at
fiber-matrix interfaces in fiber reinforced composites and at the lamina-lamina interface in
laminated composites. In all these phenomena experimental research has shown the existence
of a zone, often referred to as a cohesive zone or damage zone located at the crack tip, whose
special behavior relieves the stress and/or strain singularity that otherwise would be predicted
at the crack tip of a sharp crack and allows for some inelastic behavior to occur. -
From the theoretical standpoint, the problem is that of relating crack growth to the load
history. In this sense, fundamental understanding has been provided by the energetic approach
to fracture [15-32] that showed [15-19] how subcritical crack propagation is strictly related to
the rate of energy dissipation in the vicinity of the crack front, although the distinction between
the surroundings of the crack, generically referred to as a process zone, and the rest of the body
is often unclear. Such an ambiguity leads also to inconsistencies in the development of a
thermodynamic theory of fracture. In fact, several theoretical studies in the continuum
thermodynamics of fracture, especially those by Cherepanov [15, 21] and Rice [22-23] and,
more recently, Gurtin [24-25] and Nguyen [27-32] have shown that, independently of the
global or local (around the tip) constitutive assumptions, a sharp crack with no cohesive zone
(i.e. a system of cohesive forces acting on the crack surface) is constrained to evolve according
to the Griffith criterion [20], the latter being a direct consequence of the second law of
thermodynamics. This result is in open contrast with many of the results obtained in fatigue,
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2.0 Basic cquations

The first two laws of thermodynamics, in the pomtwise form. rcad [37]

/)l-( = (T;jfzij -, + r, (l)

(" I
{)S+(%).~p?20, (2)

where v = u(x,, 1) is the specific internal cnergy; p = (x,, 1) is the density; s = s(x,, 1) is the (total)
specific entropy: T = T(x,,t) is the absolute lemperature: a;; = a,;(x, 1) is the Cauchy stress

lensor; &; = ¢£;;(xy, t) 1s the small strain tensor; g; = qi(xi, 1) is the heat flux; r = r(x,, t) is the heat
source.

The dot over a generic variable represents the material time derivative d/dr and x; 1s the
position vector. In addition to (1) and (2) we also have
giij+pfi=0, 3)

&j = %(“i.j + ), “4)

where f; = fi(x,,1) and u; = u;(x,,1) are the body force and the displacement vector fields,

respectively. As for the pointwise material behavior, we assume that it is described by the
following set of equations [33]:

gij = e, T, 2"),

qi = qi(ew, T, Ty, o),

(5)
u= u(ekl’ T) a"),
S = S(Ekla Ta !X"),
such that
oh ch
P _ = — —_— 6
Py T T | (©)
where It = h(x,, t) is the Helmholtz free energy
h=u-—Ts, . (7)

and 2" = x"(x,, t} is a set of N internal state variables (n =1, ..., N) whose evolution is governed
by N rate laws of the type :

" =Q"e, T,2™);, n,m=1,.., N. ®)
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Fig. i. Crack without a cohesive zone.

generic field variable ¢, let
¢* =lim ¢(x, £ &vi, 1), CeR*, x.eC(t) — K1),
&-0

(16)
¢ — ¢ =[4].

By the above definition, each field variable is allowed to suffer at most a jump discontinuity
across the interior of the crack surface. The behavior of such variables in the neighborhood of
the crack tip will be discussed separately for each variable if and when the problem is
encountered. Following Gurtin [24-25] we define a circle D; of radius 6, with center at the crack
tip and translating with the crack tip itself. Thus, all points on the boundary dD; of D; are

characterized by the same velocity vector as that of the crack tip. The unit normal vector to 9D,
outward with respect to Dy, will be called m;, as shown in Fig. 1.

2.2. Thermodynamics of a crack without a cohesive zone
[n this section the key results of the continuum thermodynamics analysis of a moving sharp

crack without a cohesive zone are stated. For a complete derivation of the relationships reported
here see the works by Gurtin [24-25] and those by Nguyen [28-29].

PRECEDING. PAGE BLANK NOT FILMED
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The sccond law of thermodynamics for the body B and the crack tip alone, respectively, can
be proved o take on the form:

J Migic TAA 20, (G = 2y,) = 0. (21
B

Remark 2.1. The second of (21) is nothing but the Griffith criterion:
[>0 if G224

Subcritical crack growth, ie. [>0and 0 < G < 270, violates the second of (21) and as such is
not thermodynamically admissible for the conditions described above (i.e. no cohesive zone). [t
1s important to realize that relationships (21) are independent of the chosen constitutive
equations as long as the resulting thermomechanical fields satisfy assumptions Al and A2, and
that they are a direct consequence of having assumed that the crack tip is sharp, i.e. represented
by a single geometrical point. Thus, theories that introduce a damaged zone around the crack
(with special constitutive behavior) but that still consider the crack tip as a single point in
general will not result in thermodynamical admissibility of SCG.

Remark 2.2. The temperature behavior at the crack tip is essentially determined by assumptions
Al and A2 rather than the heat conduction law assumed. In fact, for the right hand side of (19)
not to vanish it is necessary that the heat flux be singular of order 1/r. Thus, if we have a heat
conduction law in which the heat flux is proportional to the temperature gradient, then the
temperature field is singular at the crack tip, and the singularity must be weaker than 1/r. In

particular, if the Fourier law of heat conduction is assumed, then T is singular of order log(r)
[29, 42-43] ’

_ (G = 2)f

T log r 4+ more regular terms. (22)
2kn

The above equation shows that T has the sign of (G — 2y,)i. This result reinforces the
significance of (21) and what was discussed in Remark 2.1 since subcritical crack growth would
imply that the absolute temperature becomes infinite and negative at the crack tip. This is
clearly thermodynamically and physically incorrect. Note that relationships (21) and (22) suggest
the interesting interpretation of a moving crack tip as a moving heat source, and this is
consistent with numerous observations of intense heating ahead of a propagating crack [42—43].

Remark 2.3. Through singularity analysis various authors, such as Rice [35], Kfouri and Rice
[36] and Nguyen [28-29], have shown that the quantity G is automatically null for the running
crack problem, for almost every type of material behavior except the thermoelastic one. In other
words, the quantity G, as a fracture parameter, is meaningless in most cases, such as in
viscoplasticity. Nguyen has also shown that this is due to the fact that G (as given in (20)) is
determined under the erroneous assumption that the field equations remain everywhere elliptic.
In [44], for a nonlinear elastic material, the governing equations of the crack propagation
problem have been shown to change their nature, becoming locally hyperbolic and therefore
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Surface energy is m fact an cssential component of the driving foree i sintering [50]. Note
that. assuming that the second law holds in the form given in (24) but not in (21), SCG
appears 10 be possible only when some volumetric dissipation is present, in order (o compen-
sate for the negative contribution duc to the crack advancement [18]. Thus. even under the
assumption that incquality (24) holds. the present thermodynamic analysis is unable to cope
with the problem of SCG in ceramic materials that behave in a virtually perfectly brittle
fashion.

In Scction 3 it will be shown that SCG can occur cven under the restrictions of (21) when a
dissipative cohesive zone is present ahead of the crack tip or, in other words, when the crack
up is no longer considered 1o be a single geometrical point but a finite length crack line
segment that can display a special characteristic behavior of its own. The dissipation analysis
for a crack with a cohesive zone will show that, m such a case, no problems arise concerning

the temperature field and that a continuum thermodynamic theory consistent with SCG in
brittle materials can be provided.

2.3. Thermodynamics of a crack with a cohesive zone

As mentioned above, the analysis of the running crack problem (without a cohesive zone)
presents major difficulties in that the parameter G becomes meaningless except for materials
that behave, at least asymptotically, as if they were thermoelastic. Moreover, the dissipa-
tion analysis leads-to uncertain results especially as far as the temperature field is con-
cerned. A way to overcome some of these difficulties, while remaining in the framework of
continuum thermodynamics, is to postulate the existence of a cohesive zone (c.z.) ahead of the
crack tip.

With reference to Fig. 2, a cohesive zone is defined as a portion of the crack line
C(8):{¢:0 < { < B(t)} (a more formal definition is given later) such that along a(t) < { < B(1), a
system of cohesive forces is acting. At this moment it is not necessary to specify the nature of
the cohesive force system. From its definition it appears clear that a cohesive zone, even when
characterized by a certain opening displacement, has no volume associated with it. Thus, a cz.
appears to be more a ‘mathematical’ entity rather than a ‘physical’ one, but, as it will be
shown later, its introduction into the model allows one to overcome most of the aforemen-
tioned problems in the context of continuum thermodynamics, without using nonlocal the-
ories. A c.z. is not to be confused with a so-called process zone. The latter is usually defined as
a region of finite volume around the crack tip and possibly all around the crack faces with
special constitutive equations that translate the behavior of the damaged material ahead of the
crack tip and in the crack wake. Note that In principle the existence of a process-zone does
not necessarily overcome both the problem concerning G and that concerning the singularity
in the temperature field since the crack tip is still considered a single geometrical point and

since the process zone constitutive equations are not, in general, those of a thermoelastic
material.

The crack is now defined as follows

C1) = {x(0):0 < < Py},

: (25)
cz. = {x,(0):l0) < T < flo)}.
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Alter Gurtin [26], we dcfine the crack internal encrgy per unit length (surface), £ such that
2eg =const, 0< <A
<

=<l ), w1y < ¢ < i, (27)
0, C = fi(0).

An analogous definition can be given to the crack centropy ¢

@o =const, 0<{ <o),
@ =49 1), )<<
0. ¢ = ).

< ), (28)

Let 3 = 3({, 1) 2 0 be the crack absolute temperature, such that

I=T =T~
. . (29)
V{:{ecz.

The above definition implies that the temperature field is continuous across the c.z. From
(27)H29) the crack Helmholtz free energy y is defined in the traditional way

Y =e— @8 | (30)

Given the above definitions, the first law of thermodynamics for the cohesive zone alone can be.
proven to take on the form

d B By
d—f ed{ + 2ypa = J — [g:1vi) dg, (31

) 1)
Eqn. (31) can also be given the following local form
é = 0;0; — [q:]vi. : (32)
A statement of the second law for the cz cannot be deduced using the same arguments

employed to derive (21), but rather it must be postulated. Thus, the second law for the c.z. alone
will be given the following global and local forms respectively, after Gurtin [26]

B v,

J (¢ 4 ["g”‘) >0, | (33)
x(t)

P=g+ [qf,,] s, (34)

where / = 2((,f) for x <{ < f and % = 0 for { = f3, is the intrinsic entropy production per unit
length in the cohesive zone. It can be proven that relationships (33) and (34) are consistent with
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Modeling of Delamination Damage
Evolution in Laminated Composites
Subjected to Low Velocity Impact

DavID C. Lo* AND DAVID H. ALLEN**
Center for Mechanics of Composites
Texas A&M University
College Station, TX 77843

ABSTRACT: This study examines the delamination evolution, under pcnmm..ms.,mn condi-
tions, of laminated polymeric composites with mechanically nonlinear resin rich inter-
faces. The constitutive behavior of the interface is represented by two models developed
by Needleman [1] and Tvergaard [2]. These models assumed that the Eﬂo_.?oi 5&0:.9
a function of only the interfacial displacement, will behave similarly to .Eo interatomic
forces generated during the interatomic separation. The interface Bﬁo:w_.u. parameters
control the load at which the delamination growth initiates and the final delamination size.
A wide range of damage accumulation responses have been obtained by varying the Bo.ao_
parameters. These results show that Tvergaard’s model has been found to be cn.:ﬂ suited
of the two models in predicting damage evolution for the configurations examined.

KEY WORDS: delamination damage, low velocity impact, laminated composites, finite
element modeling.

INTRODUCTION

AMINATED COMPOSITES IMPACTED at low velocity by blunt objects are sus-
H\onnazo to the development of interply delaminations. While this subsurface
damage is not readily visible at the surface, it is capable of substantially reducing
the residual strength and stiffness of the laminate. The resultant damage induced
stress redistribution can lead to the failure of the component. Therefore, it is es-
sential to be able to predict the damage evolution that occurs during the impact
event so that the serviceability of the laminate can be determined.

Much effort has been directed in recent years toward gaining a better
understanding of the damage that results when laminated composites are sub-
jected to low velocity impact (LVI). This is evident from the numerous studies,

*Graduate Research Assistant.
**Director and author to whom correspondence should be addressed.
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both experimental and analytical, that have appeared in the literature. A brief
overview of the literature is presented here.

Greszczuk [3) provides an excellent treatment of the fundamentals involved in
the analysis of LVI. He has divided the problem into three logical steps: “(1) de-
termination of impactor-induced surface pressure and its distribution,” (the con-
tact problem), “(2) determination of internal stresses in the composite target
caused by the surface pressure, and (3) determination of failure modes in the
target caused by the internal stresses.”

Although most LVI events are three-dimensional in nature, a great deal can be
learned from a two-dimensional simplification of the problem (as in the current
work). Choi et al. [4,5] have conducted an extensive experimental and analytical
study of LVI that is two-dimensional. They have used a line-nosed impactor so
as to produce a uniformly distributed transient dynamic load across the specimen
width, thereby reducing the complexity of the problem from 3-D to 2-D. Tests
were conducted on specimens of several different stacking sequences constructed
from T300/976. Different values of mass and impact velocity were used as test pa-
rameters. A phenomenon observed to be common to all of the specimen types
tested was that damage initiation took the form of what the authors called critical
matrix cracks. These critical matrix cracks were located in the 90° plies, near the
specimen midplane and were inclined at an angle of about 45°. Delaminations
and concomitant secondary matrix cracks were observed to form and propagate
after the formation of critical matrix cracks. The authors conducted a two-
dimensional transient dynamic finite element analysis in an attempt to model the
impact event. They assumed Hertzian contact and used plane strain constitutive
relations. They were able to predict the location of damage initiation reasonably
well using a matrix failure theory. Once the critical matrix crack had been pre-
dicted by the model, a “post-failure” analysis was conducted to predict damage
growth. This analysis was executed by setting to zero certain members of the
material modulus matrix for elements where the critical matrix crack occurred.
Bogdanovich and larve [6,7] have conducted a two-dimensional analysis of the
LVI problem. They investigated the impact of a rigid body of revolution on sev-
eral different laminates, some of which possessed energy absorbing interleaves.
The analysis used in this work employs polynomial spline interpolation func-
tions. A maximum stress failure criterion is used to predict failure initiation.
Their results show that interleaves can provide significant benefits. Sun and
Rechak (8] have also conducted a two-dimensional analysis of the problem. They
reported the presence of matrix cracks inclined at 45°. In addition, they ad-
dressed the optimal location of interleaf layers so as to reduce damage. Jih and
Sun [9] and Sankar et al. [10] have shown that when the impact event is
characterized by a heavy impactor traveling at low velocities the impact event can
be modeled as a quasi-static process. In addition, Sankar found that for large con-
tact areas, the contact stress deviates from the often used Hertzian solution [1].
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While few papers have appeared which attempt to address the three-dimensional
problem of LVI, noteworthy are those of Wu and Springer (12,13] and of Wu and
Chang {14]. In these works a three-dimensional transient dynamic finite element
analysis is presented for the study of LVI. With the exception of the research by
Liu et al. {15], the authors have found no papers in the literature which model in-
ternal delaminations due to impact as traction free surfaces.

Although many aspects of the LVI problem have been investigated, the current
understanding of the process is still incomplete. This is due to the complexity of
the mechanisms involved in LVI damage. One area that has not received much at-
tention is the constitutive modeling of the resin rich ply interface region in which
delaminations are located. Fractographs of delamination surfaces from poly-
meric matrix composites show the presence of fibrils and hackles [16-23]. The
former is associated with the formation of crazes ahead of the delamination and
is normally found in thermoplastic resins. The latter is associated with the forma-
tion of micro shear cracks in front of the delamination. These micro cracks are
oriented along the plane of principal tensile stress and is found predominantly in
thermosets. In the regions that transform into crazes and shear cracks, the
material can be subjected to large strains and may not behave in a linear elastic
manner as assumed in the rest of the laminate. While the mechanical response of
the interface region may only have a small effect on the overall mechanical be-
havior of a laminate with a fixed damage state, it can significantly influence the
evolution of damage and in turn the laminate's response. Such behavior indicates
a need to account for the different material response found in the resin rich inter-
face region. Unfortunately, this region is not explicitly modeled in most LVI
damage analyses and of those analyses that do take this resin rich region into ac-
count most are for modeling linear elastic interleaves [6-8]. An exception is
Ladeveze's damage model in which the interface is explicitly modeled [24]. In his
model, the mechanical properties of the interface are governed by internal state
damage variables. Since the internal state variables are volume averaged repre-
sentations of the damage state, the stresses and strains obtained from this analysis
are also averaged quantities. To the knowledge of the authors, none of the
delamination damage models found in the published literature accounts for the
development of the process zone ahead of the delamination front and the resulting
nonlinearity in the interfacial mechanical response. The current paper will at-
tempt to address this issue by presenting an LVI damage analysis that employs
nonlinear constitutive relationships in the modeling of the interfacial response
caused by some of the available deformation mechanisms ahead of the delamina-
tion. The effects of the interfacial parameters on the evolution of LVI damage in
laminated composites will then be examined in detail.

PROBLEM APPROACH

At the present time, the LVI damage analysis is modeled as a two-dimensional
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three-point bending problem. In this paper, LVI is simulated by monotonically
increasing loads applied under quasi-static conditions. As previously stated, ex-
perimental evidence supports this simplification [9]. The stress states in the in-
dividual plies and resin rich interfaces are obtained from finite element analysis.
However, due to the nonlinear response of the interface, incremental and iterative
solution techniques are employed with the finite element algorithm. Delamina-
tion propagation is evaluated using a critical interfacial separation criterion at
each load step. If conditions are sufficient for propagation, the amount of growth
is calculated and the corresponding change in the interfacial constitutive proper-
ties is updated accordingly for the next load step. This procedure is repeated until
the maximum impact load is reached. The details of this analysis are presented
in the following sections.

Interface Model

The interface region in which the matrix cracks and delaminations initiate and
propagate is composed of resin rich matrix material. Depending on the polymer
classification of the resin, the deformation process can be attributed to many
mechanisms at the molecular level. These mechanisms include uncoiling and
straightening of molecular chains, dislocation movement, reorientation of molec-
ular chain segments, void formation, and chain breakage [25]. Whether.one or
more of these dissipative mechanisms is activated will depend on such factors as
loading rate, temperature, and processing history. Moreover, the mechanical re-
sponse of the resin in the interface region may be different from that of the re-
sponse measured in bulk resin specimens. The addition of reinforcing fibers, es-
pecially when the resin is sandwiched between two plies with different fiber
orientations, will impose constraints that will alter the stress state in the resin rich
region, thus suppressing some deformation mechanisms while enabling other
deformation mechanisms to occur. Therefore an understanding of the molecular
behavior is helpful in order to accurately predict the response of the resin under
these conditions.

Since this process is quite complex, phenomenological models for approx-
imating the interfacial response will be used as a first approximation. In the cur-
rent analysis, two interface models, originally applied to interfacial debonding
between the fibers and matrix in metal matrix composites, are considered. Both
models assume that the normal traction exerted on the interface during purely
normal separation behaves similarly to the interatomic forces during interatomic
separation.

The first model, proposed by Needleman, describes the interface surface trac-
tions in two dimensions as follows [1]:

27 Un u,\? ) (us

R:
N."MQ!-M~|MM+ 5 +Q.W ﬂl_ (n
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27 u, u, u.\?
ﬁ".m-qs:n.ml _Imm + 5 : (2)

for u, < 6. Where T is the interfacial traction and u is the interfacial displace-
ment. The subscripts n and ¢ signify the normal and tangential components of the
specific quantity, respectively. ., is the maximum traction acting on the inter-
face during a purely normal separation. § is the characteristic length and « is the
ratio of the interfacial shear stiffness to the normal stiffness. When u, /6 is equal
to one, complete separation has taken place and the tractions are equal to zero.
If we consider the expression for the normal component of the interfacial trac-
tion, Equation (1), the work done by this traction going from u,/5 = 0 to
u,/5 = 1 in a pure opening mode (,/5 = 0) is

9
Weo = 16 Omard 3)

Needleman refers to this as the work of separation. Thus, a larger o,,., or § will
result in a greater amount of energy required to fail an interface.

The second model was proposed by Tvergaard [2] and is a modification of
Needleman's model. The modification was undertaken to give the constitutive
equations a higher order dependence on the interfacial shear separation and also
to include the shear separation into the determination of interfacial failure. A pa-
rameter, A, representing the norm of the interfacial displacement vector, defined

by

C))

is introduced into the polynomial function. The interfacial tractions are defined
in this model by

27 2

T = Gy (1= 2+ ) (5)
27 .

suoﬂqz.ml: — 2\ 4 WY 6)

for 0 < M < 1. Complete separation occurs when A = 1. The parameters for
this model are similar to Needleman's except for the individual characteristic
length assigned to each component of the interfacial displacement vector. When
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the interface is undergoing a pure normal separation, both models are identical
and the work of separation, as shown in Equation (3), is applicable to Tvergaard's
model as well. Under this interfacial opening condition, the normal component
of traction increases to a value of 0., at u,/6 = u,/6, = 1/3 then decreases to
zero at u,/5 = u,/8, = 1 as shown in Figure 1.

Analytic Formulation

Due to the nonlinearity introduced by the interface failure criterion, the virtual
work equation is solved in incremental form, resulting in [26):

QC!DmZ%DmQ&w\ = Nanob~%buk'w. - QLQ%D@\&‘ A\\V
[ 4

v W

where C,, is the material tangent modulus tensor, ¢, is the infinitesimal strain
tensor, 7, is the traction vector, Ay, is the displacement increment vector, and o,
is the stress tensor. Also, the domain of interest has interior ¥ and boundary V.
The superscripts ¢ and ¢ + Ar denote quantities at time ¢ (which are assumed to
be known) and quantities at time ¢ + Ar, respectively. In the current paper the
modulus tensor C,, is everywhere constant and linear elastic except at the inter-
face, where it changes with the interfacial separation. The approximate nature of
Equation (1) is due to the fact that higher order terms in Au, are neglected in the
incrementalization process. However, this approximation is accounted for in a

0.80

0.80

Tn/omnx

0.40

adtiitiandsnaanreat haenssenantesonanyaalagtsanaalangy

0.00 Srrrrrmrrr S

0.00 0.20 0.40 0.60 0.80 1.00
uy/6
Figure 1. Normal tractlon—normal displacement response of Needleman's model.
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rather standard way by incorporating a Newton-Raphson iteration scheme for
each increment of boundary tractions. Thus, the displacement increment is suc-
cessively updated as follows for the jth iteration:

~>E~\ = nbtvl_ + ADD:_\ va
where {AAuj, is obtained by solving the following on the jth iteration:
Hs_ﬁbbt_\ = :ﬂ..b.w _ :a.‘f_.\-_ AOV

where {K] is the global stiffness matrix, {F} is the global force matrix, and [R}
is the global reaction matrix.

Equations (2) and (3) are solved recursively until the following convergence
criterion is satisfied:

[Au], = Aul,.,
—_— <, 10
—DE —\ t A v
where r,,, is a user specified convergence tolerance and || signifies the Eu-

clidean norm.

This algorithm has been implemented into a FORTRAN finite element code
developed by the authors. The code utilizes constant strain triangles except at the
interfaces, wherein both shearing and normal bar elements are incorporated at
each node. Their mechanical response follows that of the aforementioned interfa-

cial models.
COMPUTATIONAL RESULTS

Parametric Study

The first part of this section examines the effects of the interfacial parameters
on the evolution of delamination damage. By knowing how each parameter in-
fluences the damage process, it might be possible to tailor the properties of a
laminate to respond in a beneficial manner. ‘This may be to resist LVI induced
damage or it may be to accumnulate damage in a controlled manner so as to dissi-
pate energy. Recall from the previous section that Needleman’s and Tvergaard’s
models share similar model parameters, the only exception being Tvergaard’s
specification of separate characteristic lengths associated with the normal and
shear displacement components. For the purpose of this study, these two charac-
teristic lengths, 4. and §,, will be set to identical values and thus the parameters
to be examined will be the maximum interfacial stress, o..; the ratio of the inter-
facial shear stiffness to the normal stiffness, «; and the characteristic length, 4.
The range of parameters used in this study is listed in Table 1.

Delamination Damage Evolution in Laminates Subjected to LVI 385

Table 1. Range of model parameters examined in parametric study.

Parameter Omax?

Examined MPa (ksi) 8, mm (in) a

Omax 13.8 to 68.9 1.0 x 10~ 0.3

(2.0 to 10.0) (3.9 x 107)

$ 34.5 25 x 10*t0 2.5 x 107 0.3
(5.0) (1.0 x 10" 10 1.0 x 10~

a 34.5 1.0 x 10 0210 1.4
(5.0) (3.9 x 107)

The three-point load configuration shown in Figure 2 is utilized for the study.
This laminate has a [905/0,/90,] stacking sequence and possesses the ply level
mechanical properties shown in Table 2. Due to the low transverse strength of the
lamina, a transverse matrix crack will often appear in the mid-span of the lower
90° layer upon application of load. This transverse matrix crack then serves as
the initiation point for the delamination at the lower 0°/90° interface. In order to
focus on the evolution of this delamination, the transverse matrix crack is
assumed to exist prior to load application and interfacial elements are therefore

(90.5/0_5/90_5]

F* =178 N (40 Ibs)
L =254 mm (1.0 in.)
t_ply = 0.128 mm (0.00505 in.)

Interfacial Element
Locations

Figure 2, Schematic showing the geometry of the three-point loaded (90, /0
used In the parametric study. Pe (90,/04/50,] laminete
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Table 2. Ply level mechanical propertles

for laminates tested.

E, 120.0 GPa (17.4 Msl)
E, 9.8 GPa (1.4 Msi)
E, 9.8 GPa (1.4 Msi)
Gy 5.2 GPa (0.8 Msi)
Gy, 3.5 GPa (0.5 Msi)
Vay 0.3 0.3
Yyr 0.3 0.3

placed only at this 0°/90° interface. Furthermore, the damage state is assumed
to be symmetric about the mid-span, so that only the right half of the span has
been modeled by the finite element algorithm. Finally, the impact force is applied
as a point load that increases monotonically and at constant loading rate.

The first set of results illustrates the effect of the maximum interfacial stress,
Omass On the delamination evolution. The range of maximum interfacial stress
values has been chosen to reflect the tensile strengths of typical polymers used in
fiber reinforced polymer laminates. Figure 3 shows the delamination evolution
with respect to the applied load as predicted by Needleman'’s model. Delamina-
tion evolution was found to proceed in distinct stages. Initially, the growth is
relatively slow until a critical load has been reached. This critical load level ap-

a 3 OO0 T = mwm nw»
4 OOCOo0 dme = 27. a

5 1:00 3 AAAAA gne = 41.4 MPa
. 1 00000 0aus = 55.2 MPa
8 i eeesao,,, = 68.9 MPa o
» 3 0©
§0.80 3 )
s ] &
] E
2080 9 oF
E o%%o
2 3
s 3 o
Q b % [ A
5 040 & o 8 >%>
o -3 m
= 3 &5 & &
m ] % b% &
§0.20 ¢ ﬁ% o0 0
z p & [ a8 oo& °

3 o % 0q¢

b & a o& «*

YOI NERDSICM
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Figure 3. The effects of the maximum Interfacial stress, omaxs ON delamination growth for
Needleman's model.
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pears to be related to o,..,. The next stage is characterized by rapid growth with
the rate of growth decreasing with increasing o,.,. For the lowest value of the
maximum interfacial stress, 0... = 13.8 MPa, a third stage appears and is
characterized by a slower rate of growth. This slower rate of growth is believed
to be related to the advanced state of delamination damage in the laminate.
This set of results is characterized by the initiation of multiple delaminations
along the same ply interface. As shown in Figure 4, secondary delaminations are
formed ahead of the main delamination; then at a higher load, the delaminations
link up into a single unit. A convergence tolerance study has been performed to
investigate possible numerical causes of this behavior. However, it is not possible
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Figure 4. Delamination development for a three-point loaded [90,/0/90,) laminate at a)
50%, b) 80%, and ¢) 90% of maximum load as predicted by Neadleman’s model using the
following model parameter values: o,y = 41.4 MPa, § = 1.0 x 10~ mm, and &« = 0.3,
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) completely eliminate this effect. Thus, there might be other causes for the mul-
iple initiations.

The delamination evolution predicted by Tvergaard's model is shown in Figure
. This model also exhibits the three stage growth behavior predicted by Needle-
1an's model. However, Tvergaard's model is not as sensitive to the maximum in-
:rfacial stress as is Needleman's model. An interesting result predicted by Tver-
aard’s model is the delamination evolution for g... = 68.9 MPa. In this case,
1e delamination has the tendency to arrest momentarily before resuming at a
igher applied load, perhaps due to an energy dissipating mechanism. Then,
/hen sufficient energy has been supplied to overcome this barrier, the delamina-
on propagation resumes.

Figures 6 and 7 illustrate the typical force-displacement response predicted by
leedleman’s and Tvergaard's models, respectively. For Tvergaard's model, the
:duction in the transverse stiffness corresponds to the onset of rapid delamina-
on growth, While rapid delamination growth occurs after the reduction in the
-ansverse stiffness has taken place for Needleman's model. This delay in the
nset of rapid damage growth is most likely attributed to the use of only the nor-
12l component of the interfacial displacement in the determination of interfacial
iilure in Needleman's model.

Results from both interface models indicate that increasing the value of gp..
/ill produce intermittent crack arrest of the delamination and a shorter delamina-
on length. This behavior is related to the energy required to fail the interfaces,
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igure 5. The effects of the maximum Interfaclal stress, one,, 0N delamination growth for
vergaard's model.
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as described in Equation (3). Clearly, the required energy increased as g.., in-
creased, thus increasing the fracture toughness of a material.

The next parameter examined is the characteristic length, §. Values of & rang-
ing from 2.5 x 10®* mmto 2.5 x 10~ mm are considered, the largest § being
on the same order of magnitude as the thickness of the resin rich interfacial layer
in laminated composites which is generally observed to be of several fiber di-
ameters in thickness. The delamination evolution predicted by Needleman’s
model for these values of § is shown in Figure 8. It appears that the characteristic
length has only a minor effect on the rate of damage growth and the critical load
at which the growth accelerates. The final length of the delamination is shorter
for smaller values of &, while larger values of & cause local regions of unstable
growth. Once again, multiple delamination initiations are predicted in a single in-
terface by Needleman’s model.

With the exception of § = 2.5 x 107 mm, the results, shown in Figure 9,
from Tvergaard’s model are almost identical for the different values of the charac-
teristic length. & has little effect on the critical load, rate of damage growth, and
final delamination length; but for § = 2.5 x 10" mm, the delamination grows
unstably across the entire interface after reaching the critical load. This growth
is halted only briefly mid-way along the interface and no multiple delaminations
are observed. The corresponding force-displacement response is shown in Figure
10. Distinct changes in the transverse stiffness are apparent for this case. Such be-
havior has also been observed by Jackson and Poe [27].
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Figure 8. The effects of the characteristic length, 8, on delamination evolution for Needle-
man's model,
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Figure 9. The effects of the characteristic length, 8, on delamination evolution for Tver-
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For both models it appears that the characteristic length does not affect the
damage accumulation to a large degree for certain ranges of §. When it does, the
results are dramatic as illustrated by Tvergaard’s model for § = 2.5 X 10~ mm.
This response obtained by Tvergaard's model is related to the relative stiffness be-
tween the interface and the surrounding region. A relatively compliant interface
produces an interfacial displacement distribution that decreases gradually as one
moves away from the tip of the delamination. Increasing the relative stiffness of
the interface causes sharper decreases in this displacement distribution. There-
fore, a compliant interface will have a larger region that is close to the critical dis-
placement for failure than a stiffer interface. Thus, when the interface ex-
periences an increase in displacement, a larger increment of the delamination
growth occurs in the compliant interface. Consider Needleman's expression for
he normal tractions as an example once again. The initial stiffness in a pure
mode I opening case is,

aT, 27 Omes
Bt om0 = & D (n

Note that Equation (11) is also valid for Tvergaard’s model. Using 0n.. = 34.5
MPa, the initial stiffness corresponding to the &s used in this parametric study
ange in order of magnitude from 10* MPa/mm to 10° MPa/mm. It is postulated
hat in the case of 6 = 2.5 x 10~ mm, the stiffness is low enough as to cause
he unstable delamination growth,

Since the insensitivity of the damage evolution to the characteristic length, 8,
ippears to contradict the trends set by the expression for the work of separation,
Iquation (3), further investigation is required. Studies where o.... and & are
raried in a way that keeps the work of separation or the initial stiffness constant
:ould provide insight into this problem.

The final parameter to be examined is the shear stiffness to normal stiffness
atio, a. Since the ratio of the shear modulus to Young's modulus for typical
rolymers used in laminated composites is less than 1.0, values of « between 0.2
ind 1.4 are examined. Figure 11 illustrates the delamination evolution predicted
1y Needleman's model. In general, the critical load increases with & while the
inal delamination length and damage growth rate decreases with «. However,
hese changes are very minute. Only for the case where @ = 0.2 does there seem
o be a notable variation in behavior. This case produces unexpected fluctuations
n the rate of delamination damage growth. This response is possibly attributed
3 the fact that only the normal displacement is considered in Needleman’s inter-
acial failure criterion. In the current damage configuration, the delamination
'ropagation is initially Mode I opening dominated. As the delamination grows,
Aode 1 dominance decreases until its contribution is almost the same as the
Aode 1I contribution [28]. Decreasing o would have the effect of reducing the
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Figure 11. The effects of the interfacial shear to normal stitiness ratio, «, on delamination
growth as predicted by Needleman's model.

shear stiffness of the interfaces and thus increasing the interfacial shear displace-
ments and Mode II contribution. This increase in the shear displacement may
reduce the normal displacements to such a degree as to postpone failure under
Needleman’s criterion to a higher load, thus explaining the many changes in the
rate of growth and the abrupt cessation of the delamination evolution.

When Tvergaard’s model is used, the effect of o on the damage evolution,
shown in Figure 12, is similar to that for Needleman's model. In this case, the ef-
fects are more apparent than in Needleman's model. For both interfacial models
in general, the shear stiffness to normal stiffness ratio, «, affects the damage evo-
lution in a similar way as the maximum interfacial stress, o...,. This is due to the
fact that for the current interfacial models, the expression for the work of separa-
tion in a mixed mode opening case will have the following form,

W,

sep

= W, + aW, (12)

where W,, and W,, are components of the work of separation in the normal and
shearing directions, respectively. As « is increased, the work of separation is also
effectively increased. However, the increase will not be linear as u, and «,, used
in calculating W, and W,, are dependent on a.

Multiple Interface Examples

The second part of this section illustrates situations in which more than one in-
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terface is undergoing damage development. This process occurs when load is re-
distributed from a damaged region to an adjacent region. The additional load in
turn initiates and propagates damage in the adjacent region. Sometimes the load
transfer removes sufficient energy from the initially damaged area to prevent fur-
ther damage growth, while in other situations damage in both regions can propa-
gate simultaneously. The first example to be considered is shown in Figure 13.
This laminate has a [0/90, ), stacking sequence and the finite element mesh of this
configuration contains three interfaces. One interface is located at each 0/90 in-
terface, as shown in Figure 13. The remaining interface is located in the 90° layer
and inclined at a 45° angle. Based on experimental observations of other cross-
ply laminates [4], it is positioned close to the point of load application, as shown
in Figure 14. This interface models the “critical” matrix crack that initiates the
delaminations at both 0/90 interfaces. The ply level mechanical properties used

O s
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A d
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N
) 0.726 mm E%nn B
( Interface 2 Q.508 mm
Y
N
Ll Bl lddnddnbnd
\ 7 Interface 3 M Layer C 0127 mm

—]
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CLOSE-UP VIEW
Figure 14. Schematic showing the location of the Interfaces in the [0/90,/0] laminate.
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in this problem are the same as those used in the parametric study. Listed in Table
3 are the properties for the interfaces. For simplicity, the delaminations and the
“critical” matrix crack have identical interfacial properties. In addition, the im-
pact load is applied in the finite element model as a monotonically increasing
statically applied point load.

Figures 15 and 16 show the damage state near the point of load application dur-
ing various stages of the loading history for Needleman's and Tvergaard’s models,
respectively. The results from Needleman's model indicate that the “critical”
matrix crack initiates at the lower 0°/90° interface and then propagates in a stable
manner towards the upper 0°/90° interface. The matrix crack advances approx-
imately three fourths of the thickness of the 90° layer before being arrested. In
the mean time the delamination at the lower 0°/90° interface initiates and starts
to propagate. This delamination continues to grow for the remainder of the load-
ing history. The upper interface, however, remains intact. Delamination growth
at and near the upper interface is most likely suppressed by the compressive
stresses around the point of load application. Recall that in Needleman’s model,
interfacial failure occurs when the normal component of the interfacial displace-
ment is greater than the characteristic length. In other words, the tangential dis-
placement does not play a role in the determination of failure.

The initiation of the “critical” matrix crack is predicted to occur at a higher
load by Tvergaard’s model than the load predicted by Needleman’s model. The
matrix crack appears to propagate continuously across the ply. At 87% of maxi-
mum load, the matrix crack has completely propagated across the 90° layer, a
delamination forms at the lower 0°/90° interface and another one has initiated at
the upper interface. The delamination at the lower interface does not experience
further growth as the load increases, but the delamination at the upper interface
proceeds along the interface toward a region directly under the point of load ap-
plication. The prediction by Tvergaard’s model of a delamination in the region
around the point of load application, which is consistent with experimental
observations for cross-ply laminates [4], is due to the use of both interfacial dis-
placement components in the form of a displacement norm to determine failure.
Thus, even though the normal displacement may be much smaller than the char-
acteristic length, the tangential displacement is sufficient to initiate the failure. It
should be noted that this analysis omits Tvergaard’s friction force term. Had this

Table 3. Interfacial parameters for three
Interfaces test case.

Omax 68.9 MPa (10.0 ksi)
8 1.0 x 10* mm (3.9 x 10" in)
a 1.0 1.0
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been activated when the normal displacement is compressive, it would have
reduced the amount of tangential displacement and the delamination length.
The next multiple interface example is shown in Figure 17. This example con-
tains eight interfaces; each interface located in between the 0° and 90° ply
groups of the [(05/90,),/0,], laminate. The ply level mechanical properties used
in this case are identical to those used in the previous example. Listed in Table
4 are the interfacial properties used in the current example. Once again, simplify-
ing assumptions are made in this analysis. Presumption of a symmetric damage
state about the mid span of the laminate enables the finite element modeling of
only half the length of the laminate. Also, the impact load is modeled as a mono-
tonically increasing quasi-statically applied point load. The delamination damage
state predicted by Needleman's model for this eight interface example is shown in
Figure 18. Only a small amount of damage is predicted and it is located at the bot-
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Figure 17, Schematic showing the geometry of the three-point loaded {(0,/90;),/0,], lami-
nate used In the elght interface damage evolution configuration.
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Table 4. Interfaclal parameters for elght
Interfaces test case.

Omax 34.5 MPa (5.0 ksi)
8 1.0 x 10 mm (3.9 x 10" In)
o 1.0 1.0

tom most interface. This delamination initiates at 85% of the maximum applied
load but it does not propagate any further as the load is increased. The results
from Tvergaard's model are shown in Figure 19. Delaminations are predicted in
three of the eight interfaces. The largest delamination and also the first to initiate
is located at the bottom interface. This delamination will be referred to as the
“main” delamination. At the interface immediately above the bottom interface, a
delamination about half the size of the main delamination is predicted. The final
delamination is located two interfaces down from the upper surface. Its size is
also about half that of the main delamination. Since the failed interfaces are not
connected to each other by matrix cracks, initiation and propagation of subse-
quent delaminations in the other interfaces are due to the redistribution of load
among the plies and are not due to the high stresses ahead of the crack front.
Damage evolves from the bottom interface and moves toward the upper surface
in a sequential manner. A new delamination initiates in another interface shortly
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Figure 18. Delamination damage state for the three-point loaded [(0,/90,),/0,), laminate
as predicted by Needleman's model.
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Figure 19. Delamination damage state for the three-point loaded [(0,/90,),/0,], laminate
as predicted by Tvergaard's model,

before the current delamination arrests. The delamination pattern predicted by
Tvergaard’s model appears to more closely follow the triangular profile observed
experimentally in LVI damaged specimens [29] than Needleman's model. Inclu-
sion of transverse matrix cracks into the finite element model will probably en-
hance the damage development in the interfaces located in the middle of the lami-
nate.

CONCLUSION

This study illustrates the range of damage accumulation that can be obtained
with Needleman's and Tvergaard's interface models. The parameters found in
these models control the stiffness of the interface, work of separation, and inter-
facial separation at failure. This in turn affects the load at which the delamination
growth accelerates, the rate of delamination growth, and the amount of damage
accumulated. Influence of the interfacial properties on the damage evolution is
most apparent in cases associated with parametric values that are at the extremes
of the range of values tested in this study. These parametric values cause a partic-
ular factor that controls the damage growth to become dominant and produced re-
sponses that differ from the trend established by the other parametric values in
the range examined. It is thus possible to obtain a wide range of damage response
from brittle to ductile by varying these model parameters. This behavior, unfor-
tunately, means that in order to study the damage response of a specific material,
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precise values of the associated model parameters must be determined. On the
other hand, if the physical characteristics of a material can be related to these pa-
rameters, it would aid in the design of materials to meet interfacial damage design
requirements,

For the cases considered, Tvergaard’s model predicts a greater amount of
damage than Needleman's model. This can be traced to the mode in which the
delamination is propagating. In the current examples, both the normal and shear-
ing components of interfacial displacement contribute to the failure of the inter-
face. Needleman's model, however, only considers the normal displacement
component in the failure criterion. This results in the delayed detection or omis-
sion of interfacial failure and may contribute to the numerical irregularities ex-

perienced by some of the test cases using Needleman's model. Tvergaard uses

both components of interfacial displacement in the form of a displacement norm
and therefore predicts a greater amount of damage. This approach weighs both
displacement components equally. It should be noted that the displacement com-
ponent may need to be weighed differently in order to reflect the deformation or
failure mechanisms at the interface. One way this can be accomplished is to use
different values of the characteristic length for the two displacement components
1s proposed by Tvergaard. The different responses predicted by the two interface
models are also attributed to how the interfacial displacement terms are intro-
luced into the expressions for the interfacial tractions, Equations (1), (2), (4),
ind (5). For example, the expressions for the tangential traction, Equations (2)
ind (5), are identical for the two models except for the use of the displacement
1orm for Tvergaard’s model in place of the normal interfacial displacement found
n Needleman's model. Since the norm of the displacement will be greater than
r equal to the absolute value of each individual component for a given interfacial
lisplacement, Tvergaard's model will be further along the tangential traction ver-
ius displacement curve than Needleman's model and thus closer to failure.

The difference in response between the two interface models is greatest for the
est case with eight interfaces. In this case, the ability of the interface to transfer
oad from one ply group to the adjacent group affects the damage evolution in the
ither interfaces. The development of the interface models is based on the
issumption that the interfacial traction behaves similarly to the force generated
luring interatomic separation. This means that the traction force initially in-
reases with interfacial separation. Once the maximum force has been reached,
he traction force decreases with separation until the interface fails. During this
reriod of decreasing traction force, the load is transferred from this portion of the
nterface to other parts of the laminate. Since the use of the displacement norm
n Tvergaard's model places the response further along the traction versus dis-
lacement curve than Needleman's model, an interface modeled by Tvergaard's
nodel will undergo the unloading process sooner, thus hastening the conditions
or failure in the adjacent interfaces. Overall, Tvergaard’s model appears to be
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better suited for predicting the mixed mode damage evolution found in the three-
point bend configurations tested.

The discussion now turns to the accuracy of these two models in the prediction
of damage in laminated fiber reinforced polymeric composites. As mentioned in
a previous section, there are numerous mechanisms at the molecular level that
cause the deformation and failure in the resin rich interface. The activity of the
deformation mechanisms is dependent on the molecular structure of the polymer,
loading conditions, temperature, and processing history. These mechanisms may
occur sequentially or concurrently. The objective is to relate these molecular
mechanisms to the response of the interface at the continuum level. Because the
interface models are functions of only the interfacial displacements, they will not
have the capability to capture the effects of rate and temperature dependent
mechanisms. Fortunately, models have been developed for the viscoelastic re-
sponse of polymers and can be incorporated into the present study [30,31]. Like-
wise, there are models available to represent the fibril dominated structures found
in craze zones ahead of a crack tip [32]. Due to the wide ranging nature and
unique response of each mechanism a model developed based on the behavior of
a single mechanism would not be sufficient to predict the entire deformation re-
sponse up to failure. The ideal model should contain components for representing
each deformation mechanism. Criteria should be established to govern the ac-
tivities of these components. Thus, the models examined in this study would
serve as a starting point in the development of a comprehensive procedure for
modeling the polymeric interface,
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Using the GSM theory (Halphen and Nguyen [20]) it is assumed that the c.z. free energy
is a function of the opening displacement &, the temperature 6 and, possibly, a set of internal
parameters representing the interface microstructure. For simplicity only one of such parameters
will be included herein and will be indicated by the symbol p. The present formulation differs from
the GSM theory in that the function 9 is not required to be convex in the kinematic variable &.

The total cohesive force o is assumed to be expressed by the following additive decomposition:

o=0"to°. (3.1)

e

o° is assumed to be the part of the total cohesive force that is mechanically conservative for

all processes constrained on hypersurfaces with & = const. and g = const.. In other words, any
transformation with = const., u = const. and o'" = 0 is an elastic process.
Under the above assumption the c.z. free energy is therefore a function of the following type:

b = 0(6,0, ) (3.2)
definable in the following manner (Edelen [22]):

V6,0, 1 w(6.0.) = bl + [ 6-0°36:0,m)dx A€o, (3.3)

where it has been assumed that for any given pair 6 = const., p = const., all admissible points &
on the hyperplane 6 = const., g = const. are reachable from the origin of said hyperplane along
a straight path. For the sake of simplicity and without loss of generality the function %,(6, p) is
assumed to vanish identically:

$ol6, 1) = 0. (3.4)

The above definition of free energy is clearly consistent with the classical one usually employed in
constitutive theories with internal state variables (see e.g. Rice [23]).

Eq. (3.3) implies that the 0" component of the cohesive force does not contribute to any local
energy storage mechanisms, whereas eq. (3.1) implies that o expresses the mechanics of some
phenomena acting in parallel with the c.z. deformation process. Hence, o" lends itself to the
description of those dissipative phenomena, such as the c.z. nucleation process, that cannot be
fully described in terms of the chosen set of c.z. state variables. Clearly, neither eq. (3.1) nor eq.
(3.3) are sufficient to fully characterize the function o*. In this regard it must be noted that if
o' is assumed to be a function of the chosen state variables and possibly of their rates, such a
function cannot be totally arbitrary. In fact, in order for egs. (3.1) and (3.3) to be compatible
the relationship linking 6 and o™ cannot associate a unique o*" to a given & (for any fixed pair
6 = const., pu = const.) since, in this latter case, o would have to replace ¢ in the integrand in
eq. (3.3). In other words, egs. (3.1) to (3.3) also imply that for any given & (and in particular for
6 = 0) the mapping § — o*", and in turn the mapping 6§ — o, is in general set valued. Thus, the
constitutive assumptions reflected in egs. (3.1) to (3.3) provide a possible solution to the problem
discussed in the introduction regarding the necessity for the mapping § — o to be set-valued at
6=0.

For the proposed formulation to be completely acceptable we have yet to show that the force
can be physically related to a particular crack or interface nucleation mechanism. In order
to achieve this result we will rely on considerations based on the second law of thermodynamics
and on a global thermodynamic analysis. The latter, presented in the next section, will show
that the field o' and the field &, although seemingly unrelated at the local level, are conjugate
with respect to the total free energy of the system B UC. This in turn suggests that the proper

o,"‘

8



characterization of the relationship between o'" and 6 is expressed by a kinetic equation, that is,
an equation of evolution. In the present theory, the c.z. evolution will be required to conform to
the maximum dissipation principle. Such a requirement will then be formalized by assuming that
the c.z. evolution equation can be derived from a dissipation potential.

The decomposition in eq. (3.1), central to the present formulation, has been suggested explicitly
in a number of works available in the materials science literature (Verheulpen-Heymans [24]; Leonov
and Brown [25]). Gurtin [14], in his discussion of viscoelastic c.z. models, also concludes that a
decomposition such as eq. (3.1) can be introduced, but the issue of giving o' a consistent physical
interpretation and a proper evolution equation is left unaddressed. Eq. (3.1) has also been less
explicitly suggested by other authors such as Riedel [26] and Hui et al. [9].

Substituting eqgs. (3.1) to (3.3) into eq. (2.20) we have

(g_f—ae)-S—a"-ZSJr(¢+%—>6’+g%-ﬂ30 (3.5)

By the use of classical arguments of the GSM theory (Germain, Nguyen and Suquet [27]), we
see that equation (3.3) and inequality (3.5) yield the following c.z. state equations:
L0 3y %

g

where « is the local free energy conjugate of the state variable p.
From egs. (3.6) and inequality (3.5) we see that the energy dissipation in the c.z. is given by

o b+ k->0. (3.7)

Having assumed that the c.z. thermodynamic state depends also on some internal variable I,
it is necessary to complement the set of c.z. constitutive relations with the appropriate equation of
evolution for the variable . In analogy to eq. (2.9) we assume that

i € Owi(k) (3.8)

where the subscript [ stands for interface.

4. GLOBAL THERMODYNAMIC ANALYSIS

As discussed in section 3, the cohesive force decomposition in eq. (3.1) and the c.z. free energy
definition in eq. (3.3) yield the desired result of a set valued relation between o and 6. However,
egs. (3.1) and (3.3) fail to provide a complete characterization of the c.z. constitutive behavior since
the quantity o*" is left undetermined. The purpose of this section is that of completing the c.z.
constitutive equations by providing a thermodynamically consistent characterization of the force
o'". In order to achieve this goal considerations based on global thermodynamics will be used. By
global thermodynamics we mean a thermodynamic analysis of the system at hand as a whole (almost
as if it were a single material point). A more precise definition is given in the excellent discussion
by Germain et al. [27]). Thus, similarly to what is done at the local level, the main objective of
the global analysis is the determination of thermodynamic potentials for the whole body. Such
potentials will be functions of all those parameters that one has to specify to fully determine the
amount of strain energy stored in the system at a given time. Said parameters will be referred
to as global state variables and they include the system geometric descriptors, the boundary data
and the internal microstructural configuration. Clearly, the global state variables in general belong
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to an infinite dimensional space, contrary to what happens in the local theory. Apart from this
important distinction, Germain et al. [27] have shown that under quite unrestrictive assumptions on
the pointwise thermodynamic behavior there is an impressive formal similarity between the global
thermodynamic potentials and the local ones. In particular, one can find quantities that, although
loosely related at the local level, behave like thermodynamic conjugates pairs with respect to the
global potentials. Moreover, those global variables that cannot be directly controlled through the
boundary of the body can be shown to behave like internal state variables at the local level. In
fact, it can be shown that the evolution of global internal variables can be characterized using a
global dissipation potential. A remarkable example of the usefulness of these concepts has been
provided by Nguyen [16, 19] in the field of fracture mechanics and plasticity. Generalizing an earlier
analysis by Rice [28], Nguyen {16] has shown that the total potential energy of an elastic cracked
body can be used to define a global thermodynamic potential that behaves at the global level like
the Helmholtz free energy at the local one, and has extended this result to elasto-plastic systems.
In such a context, the crack energy release rate, in both elastic and elasto-plastic systems, has
been shown to be precisely the generalized thermodynamic force conjugate to the crack length with
respect to the global free energy (cf. Rice [28]). Furthermore, Nguyen [16] has reformulated the
Griffith criterion as a crack evolution law obtained from a global dissipation potential function of
the energy release rate. Other important applications of global thermodynamics can be found in
the field of homogenization theories for composite materials (cf. Germain et al. [27]).

In the present section the set of the global state variables (external and internal) for the system
at hand will be determined. The crack fields o*" and § will be shown to be conjugate with respect
to the global free energy of the system. The existence of a global dissipation potential governing
the evolution of the (global) internal field § as a function of o" will be postulated and a class of
evolution equations for the field § will be obtained from said dissipation potential. In section 5
it will be shown that the formalisms developed in sections 3 and 4 can be given a clear physical
meaning and can be used in a great variety of practical applications.

Germain [29] has shown that the concept of global free energy for dissipative systems can be
derived by an extension of the concept of total potential energy. The total potential energy in the
sense of Germain [29)] for the system B in Fig. 1 is the functional

E[u,ud,fd,A,T,a,ﬂ,é,u]=/Bph(E(u),A,T)dA—/aB fd.udl-{-/ﬁzp(&,T,p) ¢ (4.1)
E 0

where, § = T on c.z., and u = u? on 63{3. For the moment, all the parameters listed within

brackets on the left hand side of (4.1) are assumed to be specifiable arbitrarily. This assumption
will be verified a posteriori with the intent of showing that in general the parameters & and B do
not satisfy such a requirement and therefore must be eliminated from the list of independent global
state variables. Furthermore, the field § will be shown to be a global independent field only when
the c.z. constitutive equations conform to the assumptions in egs. (3.1) to (3.3).

The functional £ can be thought of as a 9-parameter family of elastic total potential energy
functionals, each of which is obtained by computing the right hand side of (4.1) for an aribitrarily
given 9-tuple of said parameters. Since £ is well defined for any given 9-tuple of parameters,
the latter are not required (at least at this stage) to satisfy the equilibrium equations or to be
compatible with any actual evolution.

The satisfaction of the equilibrium equations, in a sense that will be made clear below, is now
used as a criterion to select a subfamily of potential energy functionals that will be later defined to
be the global Helmholtz free energy for the system at hand.

Among all possible displacement fields u a particular one can be found by specifying all other
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parameters on the left hand side of (4.1) and by solving the corresponding purely elastic boundary
value problem. The latter is defined as follows:

Given the fields u?, f¢, A, T, 8, and p on the corresponding domains of definition
find the field u € K such that the equilibrium equations (2.11) are satified,
subject to the boundary conditions in eq. (2.12).

where K is the set of all admissible displacement fields:

u € CY(B)

pkolu= u? Vt,Vx € 9BF (4.2)
[u(¢, )] = 8(¢,t) V(€ [e, 8]
[u]-v >0 V¢ € [0,5]

Note that o and A do not need to be explicitly specified since their position is implicitly assigned
once the field & is given.

In essence, the problem just defined is a classical elastic boundary value problem (BVP) where
together with the usual set of boundary data in eq. (2.12) some other (and less traditional) con-
ditions are specified, equivalent to the assignment of some eigenstrain fields. Thus, under the

assumption that the free energy h(E(u), A, T) is a convex function of E, the displacement field u
solution of the above BVP is unique and is such that

Elu;ud, .. . p4] = min &[u; u?

Jin youos i) (4.3)

Under these conditions, a unique global thermodynamic potential H for the system B can be defined
as the value of £ corresponding to the field u solution of eq. (4.3) (Germain (29]):

Hu?, £, A, T, e, 8,6, 1) = min £{u;u’, %, A, T, @, 8,6, ). (4.4)
u.

Globally, the functional H corresponds to the Helmholtz free energy h at the local level. Note that
since the field u is no longer considered as an independent parameter, it has been eliminated from
the list within brackets on the left hand side of eq. (4.4).

Once the potential H is defined, it is possible to determine the thermodynamic conjugate
pairs that characterize the crack energetics. In other words, it is possible to determine those
thermodynamic forces, analogous to the energy release rate in fracture mechanics, that govern the
c.z. evolution. In order to do this one needs to take derivatives of  with respect to the chosen global
independent state variables. Clearly, when referred to H the term derivative must be intended in
the sense of Gateaux (Sewell [30]). The notation H 4 will indicate the Gateaux derivative of H
with respect to the quantity ‘¢’ relative to a convenient topology.

The derivatives of H with respect to the fields u? and £¢ on 8B and of the fields A and T in B
can be considered a classical result in global thermodynamics (Germain et al. [27]):

Ha, = -Bi(x,t) x€B; Hr=-s(x,t) x€B,;

4.5
H‘ud = f(x,t) X € 83{’3; H'fd = u(x,t) X € 3B2E ( )

H.1 on C will be derived below along with the other results concerning the crack.
Next, the derivatives of i with respect to the crack state variables will be derived and discussed.
One simple way to obtain such derivatives is to compute the first variation of the potential H and
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apply the Reynold’s transport theorem. Thus, recalling that the function Y(6((,1),0(¢, 1), (¢, 1))
has been assumed continuous at { = a whenever éa # 0 we have

§H = — [p(s6T + Bi - §Ar) dA + [ppef - bu® dl - fypeu- 614 dl (4.6)
— (0 - %) 65 d( — [2(0bT + k- 6p) dC + 9 | 68

The top line of eq. (4.6) essentially represents the results already listed in eq. (4.5). Hence, recalling

that $(6(8,t),6(8,1), 1(B,t)) = 0 (where the symbol ‘=’ signifies identically equal to), from egs.
(3.1) and (3.6) we have

Hg=-0" Hr=—-p Hu=-x oncz. (4.7)

Furthermore, we have
Hp=0=H,. (4.8)

Equations (4.8) show that the global thermodynamic potentials  and, in turn, £ are indepen-
dent of the variables @ and 8. An important consequence of this result is that the variables a and 8
cannot be assigned arbitrarily under any circumstance. This is in contrast with the usual outcome
of standard fracture mechanics analyses. In fact, in fracture mechanics a quantity such as Ho is
in general non-null and represents the crack energy release rate according to the definition given
by Griffith [31]. If # o (H ) had not been identically null, then « (8) could have been considered
a global internal variable and its evolution could have been characterized via a dissipation poten-
tial function of the energy release rate H , (H g) as it can be done in a more traditional fracture
mechanics context (cf. Nguyen [16]). In the present case neither o nor § can be considered global
internal variables. Their values during an actual evolution are therefore completely determined
once the c.z. constitutive equations are accounted for in satifying the equilibrium equations. The
quantity that replaces the energy release rate in expressing the driving force for the ¢.z. evolution is
the conjugate with respect to H of the c.z. opening displacement, namely the field —o*" V( € [a, 8]
This latter point will be discussed in greater detail in section 6.

In view of the above result, it must be noted that if the c.z. constitutive equations were chosen
so that o could be derivable from the free energy potential 9, i.e. if o'" = 0, even the first of egs.
(4.7) would vanish identically. This does not only imply that the potential ¥ is independent of the
field § but also, and more importantly, that in reality a unique H cannot always be defined due to
the third of (4.2) (K 5§ = 0 = £ 5 implies that § cannot be treated as a boundary data) and to the
assumption that the c.z. free energy is non-convex and that the elastic bifurcation/stability problem
associated to eq. (4.3) must always be addressed before anything can be said on the c.z. evolution.
Moreover, the latter is essentially determined by the equilibrium equations (totally determined in
the absence of c.z. internal variables such as p).

As mentioned in the introduction, the issue of elastic bifurcation and stability of a purely linear
elastic body with a non-linear elastic interface (i.e. non convex interfacial free energy with 0" = 0)
has been studied by Suo et al. [10] by establishing the existence of certain interface stationary waves.
In the present context, the same problem can be treated using standard variational calculus. The
loss of solution uniqueness for the problem defined in eqs. (4.2) and (4.3) can be readily seen by

studying the sign of the second variation of the potential £. Under the hypotheses that o*" = 0,
§%€ takes on the form

?h(E) s %P
20 _ . .
55_/851-3 3E5 5EdA+/a 86 - 2o5 86 d( > 0. (4.9)

Since the function ¥ is not convex, the integral on the right hand side of inequality (4.9) may
become negative and overcome the positive contribution from the first integral thus leading to a
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loss of uniqueness in the solution of the given boundary value problem. Note that if the system
at hand is fully elastic (as in the case of Suo et al. [10]) then inequality (4.9) governs both the
uniqueness and the stability properties of the problem.

When a non-null field o' is included into the picture, bifurcation and stability become, at
least in principle, two separate issues and can be treated by studying the properties of the second
derivatives of the functional H as shown by Nguyen [19] in the context of plasticity and by Nguyen
et al. [32] in the context of brittle fracture. This topic will be considered separately in section 6.

Going back to the global thermodynamic analysis, we now need to provide an expression for
the system global dissipation. In reality the part of the dissipation that is of interest here is that
associated with the microstructural rearrangements occuring in the system B. Such a dissipation,
indicated by Dy, can be determined by computing the difference between the time rate of change
of M under isothermal conditions and the power expended on the body:

. 8.
Dm,-C:/ Bk-Ade+/ (0 &+ k- 1) dC > 0. (4.10)
B o

The result here above is certainly consistent with the third of inequalities (2.8) and with inequality
(3.7).

Relations (4.7) and (4.10) indicate that the field '™ is the global thermodynamic force conjugate
to the field &, and that the latter can be regarded as an internal variable at the global level.
Therefore, in the context of the GSM theory (Germain et al. {27]) the relationship between o™ and
6 must be given in the form of an equation of evolution. The latter, consistent with the principle
of maximum dissipation, will be assumed to be derivable from a global dissipation potential convex
in the conjugate force o*":

6 € 8 (o). (4.11)
Eq. (4.11) is formally identical to eq. (3.8). Note though that the potential wr(k) is a local
dissipation potential whereas Q;(a'") is a global one. In other words, it is only through a global
analysis that the evolution equation in (4.11) can be declared thermodynamically consistent (at
least in the context of the GSM theory).

The existence of the potential Q; is one of the most important assumptions in the present
theory. The choice of expressing & as the subgradient of 2 is motivated by the intent to construct
a theory applicable to rate independent models such as that by Dugdale [2], as well as to rate
dependent ones.

With the introduction of eq. (4.11) the cohesive zone constitutive equations are complete. In
fact, although the first of eqs. (4.7) con be used to evaluate the field o*" at a given state once
everything else is known, it does not yield any information about the physically admissible o*"
fields and their evolution. It is only through eq. (4.11) that the physics underlying the field o'
enters the problem and can be given a proper mathematical formulation.

5. A FEW COHESIVE ZONE MODELS RE-EXAMINED

Before moving to the analysis of the differences between the present formulation of the running
crack problem and a more classical one (i.e. without a c.z.), a few c.z. models available from the
literature are now reformulated using the present thermodynamic framework.

The model introduced in section 3 can be schematically represented by the rheological analog
model depicted in Fig. 2. It essentially consists of two parts: a purely dissipative element, such as
the friction element of the Coulomb type in Fig. 2, placed in parallel with a non-linear spring that
in turn is placed in series with another dissipative element represented by the box with the symbol
n.
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The simplest model that can be described in terms of the general one introduced herein is the

celebrated Dugdale model (Dugdale {2]). In its most elementary formulation, the Dugdale model
is expressed by the following relationships

0<0,<0"=26=0; o,=0" 0<6, <6, (5.1)

where 0, = ¢ - v, 6, = 6 -v and ¢¥ and b represent the critical values for the cohesive force

and the c.z. opening displacement, respectively. The o — 6 graph corresponding to the egs. (5.1)
is depicted in Fig. 3a.

Ao

Gir e

T

v°

Figure 2: Mechanical Analog of the Cohesive Zone Constitutive Relations.

G T Ao=o"
GY

- o= Gir
& & '
(a) ®)

Figure 3: The Dugdale Model.

Dugdale {2] introduced this model to estimate the size of the plastic flow region ahead of a
stationary crack. Thus, egs. (5.1) are intended to describe a rigid perfectly plastic behavior, and,
from a thermodynamic viewpoint, a purely dissipative one.

Under isothermal conditions and assuming that the opening displacement § is the only ¢.z.
state variable, a purely dissipative interface can be readily modeled by setting 9(6) = 0. Moreover,

using some elements of rate independent plasticity (Moreau [33]), egs. (5.1) can be recast in the
following variational form:

(0-0")-6>0 Yo" €Cp, Cp= [0,6"], ¥ =|a¥| |;;|, | ¥ |= const. (5.2)

It can be shown (Moreau [34]) that constitutive relationships of the type given in eq. (5.2) essentially
describe a friction law of the Coulomb type.
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Eq. (5.2) can also be recast in a form identical to that indicated in eq. (4.11) as follows:
§ € dlc, (o) (5.3)
where Ic, (o) is the indicator function of the convex domain Cp:

0 ifloeCp
+o00 ifoe g Cp

Icp(o) = { (5.4)

Eq. (5.3) is therefore the kinetic equation that governs the evolution of the Dudgale model. Note
that eq. (5.3) is more general than eq. (5.1) since it includes both the behavior for & - v > 0 and
that for 6 - v <0.

Budiansky and Hutchinson [35] extended the original Dugdale model by including compressive
behavior for the study of crack closure effects during cyclic loading. Such a model can be refor-
mulated using egs. (5.3) and (5.4) extending the domain Cp to include a compressive cohesive
force:

Cp=[-a¥,a"]. (5.5)
Both the Dugdale and the Budiansky-Hutchinson models are represented by the simple rheological
model depicted in Fig. 3b. In section 6, eqs. (5.2) and (5.3) will be shown to be quite important
in the derivation of the Griffith criterion for brittle fracture as formulated by Nguyen [15-16].

A further rate independent generalization of the Dugdale model can be obtained by taking into
account some possible hardening or softening effects. One possible way to achieve this result is
to allow the convex domain Cp to be history dependent. For instance, Cp can be defined in the
following way:
Cp =[0,0Y(8)]. (5.6)

In this case the evolution law relating ¢ and § cannot be expressed by eq. (4.11) since the
function Q[(O’ir) would depend on other variables in addition to o' . Furthermore, in the case of
strain softening behavior the property of local stability in the sense of Drucker would be lost.

Another way of proceeding is that of endowing the c.z. model with a convenient free energy
function schematically represented in Fig. 2 by the non-linear spring. Some examples of the possible
relationships between o and § are shown in Fig. 4.

- s

Figure 4: A Few Possible 0® — § Relations.
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Assuming that 4 = ¢(6),i. e. u = 0, the evolution law in eq. (4.11) remains valid and the strain
hardening/softening effects are accounted for via the effect of o on o'". Consider, for example,
the following model:

V() = 9, — %5 -Ab, 1, =const.>0 A = AT, det(A) >0
g=0°+0", o°=-Aé (5.7)
o eCp= [-oY,a"], b€ alc,

For a one dimensional case with § - v > 0, the forces o, ¢ and '™ are shown in Fig. 5a.

The model described by egs. (5.7) is in essence a rate independent version of that recently
proposed by Xu, Hui, Kramer and Creton [36] for the description of crack growth along the interface
between two homopolymers toughened by di-block copolymer chains. Xu et al. [36] described the
loss of interface coherence using an idealized pull-out model. Indeed, force-displacement diagrams
like those depicted in Fig. 5a are qualitatively similar to those obtained in fiber pull-out experiments.
For such problems an interface free energy like the one proposed in the first of egs. (5.7) can be
justified with the following qualitative argument. Consider the pull-out problem depicted in Fig.
5b, in which a rigid whisker of diameter d + ¢ (¢ > 0) is extracted from a hole of initial diameter d
within a purely elastic matrix. When the whisker is still entirely surrounded by the matrix a certain
strain energy (&) is stored in the residual stress fields caused by the difference in diameter between
the whisker and the hole. Clearly, ¥(6) is a monotonically decreasing function of the displacement
6, with a maximum 4, for § = 0 and a minimum equal to zero for § = L where L is the depth of
the hole in the matrix. As the whisker is pulled out of the matrix, such a strain energy is released
at a rate 9¢/36 which is nothing but the elastic cohesive force o¢ and such that o€ - & <.

( d+¢€
A Af

(a) (b)

(s}

Figure 5: Interface Model Corresponding to Fiber Pull-Out.

From eq. (3.1) we then see that .
[ 2] o | (5-8)

which can be interpreted by saying that the o component of the cohesive force facilitates the pull-
out action. The interesting element of this particular example is that the model in egs. (5.7) does
indeed predict a global strain softening effect in the o — § curve, and that the energy dissipated
during separation is greater that the net pull-out work since o'" - dé > o -db. This last observation
may be significant in studies concerned with the determination of thermal effects at the interface.

In order to generalize the model in eqgs. (5.7) to include rate effects such as those considered by
Xu et al. [36], it is sufficient to modify the dissipation potential Q(o'") in the following way:

Q[(G'.r) — Ql(o.ir) + Qz(o,ir)

tr ir 1 _ir t (5'9)
Mo =1Ic,, Qo) = 270" -0, n = const. # 0
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where 7 is a scalar viscosity coefficient. In essence, eqs. (5.9) describe the rigid-viscoplastic cohesive

zone model, with instantaneous plasticity and linear viscosity whose analogical model is depicted
in Fig. 6a.

io o
o-ir o Xd
Lt * 5 Gi’[% )
J3p
vo |
@ ®)

Figure 6: (a) Model by Xu et al. [36]; (b) Model by Riedel [26].

As an example of a model with internal state variables, consider that depicted in Fig. 6b. Using
the formalism introduced in section 3, the equations describing the model are

5=6°467 p=6°

(5.10)
B(8, 1) = ¥(6 ~ 67)
Thus, the state equations are
o= 9Y n=ge =2t ot (5.11)
The c.z. dissipation takes on the form
o6 + %67 > 0. (5.12)

Consistently with eq. (3.7) the variable §” is assumed to evolve according to the following kinetic
equation:

8? € dwi(a) (5.13)

In order to see that the equations here above can indeed be used to obtain a cohesive zone model
of interest, consider a case in which the dominant interface deformation behavior is creep plastic
flow. In this case then the following approximations are justified:

6"’>>6“=>6"’z$

5.14
wi(o®) = A(o®)™. (5.14)

Thus,

6=A(c—-o'") (5.15)
where A and n are material parameters obtainable from experiments. In particular, if the viscosity
coefficient A is allowed to be a function of §, e.g. A = B(6)P™ and B, p, and n are constants, then

eq. (5.15) describes exactly the c.z. model for creep fracture proposed by Riedel [26]. A similar
model has been also proposed by Kramer and Hart [37].
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6. COHESIVE ZONE MODELS AND FRACTURE MECHANICS
6.1. Introduction.

In the preceding sections a general c.z. constitutive theory has been presented. The proposed
model has been shown to be both thermodynamically consistent and to satisfy the requirement
that the relation o — 6 be set valued. As discussed in the introduction, in order for a c.z.
model to be applicable to a wide range of phenomena it should also allow for the prediction of
the transition from a fully cohesive interface to a cracked one, and, subsequently, for the analysis
of the crack propagation stage of the interface life. The purpose of the present section is exactly
that of confronting these last two issues. In particular, section 6.2 deals with the problem of
crack nucleation where the latter is seen as the evolution from full cohesion to the appearance of
microcracks whereas section 6.3 deals more properly with the running crack problem and analyzes
the differences and similarities between cracks with and without cohesive zones.

6.2. Cohesive Zone Models and Crack Nucleation.

In spite of the fact that they were not originally intended to study crack nucleation, interface models
in general carry an intrinsic capability of providing useful information about the crack initiation
process or, more specifically, on the possibility of microcrack pattern formation. As mentioned in
the introduction, this capability has been explored by Hui et al. (9] and more recently by Suo et
al. [10] by studying a bifurcation problem in which both the interface and the bulk behaviors are
elastic. In this case, the bifurcation problem coincides with that of elastic stability.

The present formulation of the interface constitutive equations, by including dissipative effects,
allows one to confront the interface bifurcation problem using methods developed in the field of
plasticity, in which the issue of bifurcation does not necessarily coincide with that of stability. From
a physical viewpoint this distinction is very important since the development of microcracking and
damage in most materials occurs, at least in its early stage, under global stability.

The purpose of this section is to show how techniques from the theory of plasticity can be
applied without significant changes to the study of the interface bifurcation problem.

For simplicity, the bulk material behavior will be assumed to be elastic and the e.z. constitutive
behavior will be assumed to be that described in egs. (5.7) except for the assumption that the
function (6) is now assumed to be general. Furthermore, the system B is assumed to evolve
under isothermal conditions, the external boundary data to be of the Dirichlet type only and the

interface is assumed to be initially fully cohesive. Given the above hypotheses, the potential H
reduces to

H[u?, 6] = /B W(E(u%, 6)) dA + /0 ® o(6) d¢ (6.1)

where W(E) = ph(E) is the strain energy function (under isothermal conditions).

By definition, the potential M already includes all the information that can be obtained from the
boundary value problem that characterizes the equilibrium of the system B, which, under the given
constitutive assumptions has been shown to yield a unique solution. Thus, if a loss of uniqueness is
to occur, it would appear in the solution of the rate problem that governs the interface evolution.
The rate problem for the particular case considered herein is constructed by noting that when the
domain Cp(o'") of the admissible irreversible cohesive forces is time independent, the following
relation, usually referred to as the consistency condition, must hold:

676 =0 VY(€[0,0]and Vi (6.2)
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Once the rate of the applied boundary condition u? is given, the rate of the field " is obtained
by using the first of eqs. (4.7):

' = H 556 + M 5.q0° 6.3
1)) Hu

Now recall that the last of eqs. (5.7) can be interpreted by saying that the unknown vector &
belongs to the set N¢,, defined to be the tangent cone to the set Cp:

Nep(o)={€|€- (0" —0*) 2 0Vo" € Cp} (6.4)

so that we have . ‘
o -£>0 VEe Ngp(o'). (6.5)

Hence, the rate problem whose primary unknown is the field § can be reformulated in the following
variational form:

(€ - 8)- (M 556 + M gua0?) >0 VE € Ng (o). (6.6)

Lions [38] showed that solutions to the variational inequality (6.6) exist if the tensor field M 56
satisfies the following positivity condition:

£-Hegsl >0 VEE€ Ny (o). (6.7)

Nguyen [19] showed that a unique solution to (6.6) exists if H 66 satisfies a positivity condition
stronger than (6.7), namely

¢- H,b‘&f >0 VY€e NCD(UiT) (6.8)

where Nc,,(0'7) is the vector space generated by Ng, (o) (i.e. the totality of all possible linear
combinations of the elements of N¢,(c'")). Condition (6.8) is more restrictive than (6.7) because
it must hold on the space N¢, (o) which clearly includes Nc,(o'") as a proper subset.

Solutions to inequality (6.8), being subject to a more severe constraint than that imposed on
solutions to (6.7), identify bifurcation modes under stable conditions. A complete discussion of
inequalities (6.7) and (6.8) is certainly out of the scope of the present paper and therefore will not
be given here. Nonetheless, a few qualitative results can be established with little effort by simply
providing a more concrete form for the abstract expressions in both (6.7) and (6.8).

Consider the second variation of the functional H, as required in inequalities (6.7) and (6.8),
under the requirement that the externally controlled displacement data remain fixed:

oW 8%
2
§7H = /6E SearlE dA + /66 Sas86 dC > 0 (6.9)

where, by definition of H, the field 6E is not arbitrary, but is a function of the variation §§ such
that
div(8S) = div(FHL6E) = 0

(6.10)
0E = V(éu) | 6u = 0o0n dBg and [fu] = 66 on C

Having assumed that the function W is convex, inequality (6.9) allows one to establish that the
interface evolution problem formulated herein has a unique solution for all interface constitutive
models with a convex or null free energy 1. The most renowned of such models is perhaps that
of Dugdale, which cannot therefore be used to predict crack formation from an otherwise sound
material via the use of bifurcation arguments. The Dugdale model, like any non-bifurcating model,
can only be used in fracture problems where a crack is present to begin with. Furthermore, in the
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present formulation, in order for a bifurcation in the solution & to occur it is necessary to have a
non-convex free energy 4.

In order to extract more information from inequality (6.9) it is necessary to rewrite it in such a
way that all integrals evaluated on the domain B are transformed into integrals evaluated on the
domain [0, B]. In general, the accomplishment of this task is quite difficult in that knowledge of the
functional dependence of the field §E on the field 66 is required. Thus, for the sake of conciseness,
and with the intent of providing only a qualitative result, assume that an admissible variation §u
of the displacement field u can be given the following form:

6u:Za,-sin(k,—-x) (6.11)
i=0

where the wave vectors k; (i = 1,...,00) are to be determined as functions of geometry and material

properties and where
[6u] = € = aj]sin(k;-2z) zeC. (6.12)

=
Substituting (6.11) and (6.12) into (6.9) and employing the Reynold’s transport theorem we obtain
I¢] a2¢
om = [T€-4s d 1
H 0£{0+6636£} (>0 (6.13)
where
2 (e o) + 2 oo -

bo = (—_BBE?;E ga; ® k; cos(k; - X)) v = (—BBE;[; 2 a; ® k; cos(k; - x)) v (6.14)

Inequality (6.13) can be further manipulated and cast in the form indicated in inequalities
(6.7) and (6.8) to define a classical eigenvalue problem. For the purpose of this discussion it is
sufficient to note that, from eq. (6.14), the sign of the integrand in (6.13) essentially depends on the
magnitude of the bulk tangent elastic moduli relative to the interface elastic tangent moduli and
on a set of characteristic length scales associated with the wave vectors k;. Note that the strain
energy W does not need to be continuous across the interface. The above result is qualitatively
consistent with that obtained in a quite different context by Suo et al. [10], and therefore shows
that the treatment of the bifurcation problem suggested herein is a valid one.

6.3. Cohesive Zone Models and Crack Propagation.

We now turn our attention from the crack initiation problem to that of crack propagation. In classi-
cal fracture mechanics, i.e. in analysis without cohesive zones, the expression crack growth problem
indicates a moving boundary problem in which the primary unknown is usually the trajectory of
a single (non material) point referred to as the crack tip. The global thermodynamic analysis in
section 4 has shown that in fracture problems with a cohesive zone the primary unknown associated
with the crack is neither the trajectory of the point at ¢ = a nor that of the point at { = 8 (cf. eq.
(4.8)), but rather the time evolution of the field §. Thus, the problem with and that without a c.z.
appear very different, at least from a mathematical viewpoint. In reality, since the two problems
are intended to model the same phemomenon it is reasonable to expect some similarities between
them. The purpose of this section is therefore that of providing some insight on the relationship
between the classical running crack problem and that with a c.z..
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In order to relate the two problems it is necessary to constrain the c.z. to behave as much as
possible like a single geometrical point. Taking into account that the c.z. must have finite size by
definition, one possible way to impose said constraint is to assume that the c.z. is small with respect
to the rest of the crack surface, i.e. 8 — @ < a and to rigidify the c.z., i.e. to assume that during
crack propagation the crack tip behaves like a rigid wedge moving ahead of the physical crack tip.
This latter approach is not at all new. In fact, it concides with that followed by Barenblatt [1] who
formalized it through the following two assumptions (p. 59 in Barenblatt [1]):

Al. ...the area of the part of crack surface acted upon by the forces of cohesion can be considered
as negligibly small compared to the entire area of the crack surface.

A2. ...the form of the crack surface near the edges, at which forces of cohesion have the maximum
intensity, does not depend on the applied load.

Under assumptions Al and A2 the function 6((,t), ¢ € [a, B] takes on the form

6 =68(x,L) (6.15)
where .
x=(—-a V¥(€la,f], L=~ a=const., g—%-VSO Vx € [0, L]. (6.16)
From egs. (6.15) and (6.16) we also have
. .06 3%
b=dgn=-ég (6.17)

From eqs. (6.17) and (4.10) we see that the dissipation rate D, due to crack propagation alone
becomes

° . 05
D='/ ir 90 o 6.18
e=& [ o7 5 dx (6.18)
Eq. (6.18) indicates that assumptions A1 and A2 are certainly sufficient to render the trajectory
of the point at { = & the primary unknown of the problem as in the classical fracture mechanical
formulation. Moreover, now that a has replaced the field & as a global internal state variable for
the system B we have
0 ir a6
—H,(,:J:/ o 2% ay. (6.19)
c dx

where J is therefore the generalized thermodynamic force conjugate to . The force J can also be
expressed via the following decomposition:

J=G-R (6.20)
where

o 9% o 3
= .= d = . 22 dy. .
G /L o % x and R /1: o ax dx (6.21)

The quantities G and R are the energy release rate, as defined by Griffith {31], and the resistance
to crack growth, respectively. The quantity R is usually referred to as intrinsic fracture energy
and expressed by the notation 2. In view of the discussion given in section 5, R may not always
be a positive number. Egs. (6.18) and (6.19) bring support to the claim made in section 4 that
when a c.z. is introduced into the formulation of a fracture problem, the generalized force o' takes
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the place that the energy release rate occupies in the classical approach. The first of egs. (6.21)
represents a generalization of a well known result obtained in the context of linear and nonlinear
elasticity by Rice [39].

Egs. (6.18) and (6.19) suggest that a dissipation potential .(J) can be found such that the
crack evolution law takes on the form:

a € 00(J) (6.22)

consistent with the principle of maximum dissipation. In fact, Q(J) can be computed explicitly
under assumptions A1 and A2 once the dissipation potential Qo) is given. As an elementary ex-
ample, consider the Dugdale model formulated in egs. (5.2) to (5.4) with the additional assumption
that there exists a constant value . of the crack opening displacement at which fracture occurs.
Hence, due to assumption A2, during crack propagation, every point in the c.z. experiences an
opening rate é = -&06/dx. From egs. (5.2) we then have

§#£0= 0" = (6.23)

oV if5‘u>0
0 ifé-vr<0

Having assumed that &(x, £)- v is a monotone decreasing function of x, from egs. (6.19) and (6.23)
we have

0 08 o
7 fﬁay-ggdx ifa>0 (6.24)
0 ifa<0
The integral on the top right hand side of eq. (6.24) has the evaluation (cf. Rice [39]):
0 )
/ o’ % dx = ¥ -6, = const.. (6.25)
c 0x

Letting J = oY - §., from the above equation we see that J € (0,J,) => & = 0 and that
& #0=J =0o0rJ = J,. Thus, the kinetic equation that governs the evolution of the independent
state variable a can be given the following form:

& € dlc(J) (6.26)

where Ic(J) is the indicator function of the closed convex domain C; = [0,Jc). Eq. (6.26) can
also be formulated in the following variational form:

(J=-JYa>0 VJ*eCy . (6.27)
or . )
(G-G)a>0 VG e€Cg Cg= [R,Jo + R] (6.28)
where A
- 09y 096
R= L 36 oy dx = ¥(é.) (6.29)

Note that in the specific case of the Dugdale model, at least according to the formulation given
herein, R is always identically null. In general though, based on physical observation it is customary
to assume that R < J., so that Cg =[0,G.,] where G = J.,. ,

The evolution equation (6.28) has been proposed by Nguyen [15-16) as a re-statement of the
Griffith criterion suitable for the formulation of rate independent brittle fracture problems. As
mentioned in the introduction, the derivation presented in this section shows that such evolution
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equations can be derived under suitable assumptions (namely A1 and A2) directly from the Dugdale
model.

The procedure with which eq. (6.28) was derived is quite general in nature. In other words,
given a certain evolution equation for the c.z. one can always construct, under assumptions A1 and
A2, a corresponding evolution equation for the global internal variable o that is derived from a

dissipation potential, where the latter can be explicitly constructed as shown above in the case of
the Dugdale model.

7. SUMMARY

The present work is in essence an extension of modern constitutive theories to include stationary
partially coherent interfaces. As stated in the introduction, the theory is built so as to satisfy
three fundamental physical requirements. First, the interface is required to be capable of strain
energy storage. It is assumed that such storage capability depends on the jump discontinuity
in the displacement field across the interface itself, the interface temperature and, possibly, its
microstructure. Second, the interface is assumed to be capable, at least in the initial stage of
its life, of transferring forces across itself even in the absence of interface deformation, where the
latter corresponds to a displacement field jump discontinuity as mentioned before. Physically, the
mechanism responsible for this type of behavior is assumed to be purely dissipative. Third, the
interface constitutive equations should permit the prediction of crack pattern formation from an
otherwise fully cohesive interface via bifurcation arguments. The rationale for these requirements
has been discussed in the introduction.

The first requirement has been formalized by the assumption that there exists a function
of the interface opening displacement, temperature and microstructure that is a work potential
for the interface. This idea has been originally explored by Gurtin [14] who provided a useful
thermodynamic theory for the development of the interface constitutive equations. Within such
a framework, requirement two has been formalized by a decomposition of the cohesive force o
into two parts: o, o'". o° is assumed to originate from the interface free energy and, in this
sense, to be the expression of mechanically reversible transformations, such as bond stretching in
crystalline materials or fibril elastic stretching in polymer crazing. o'" is not assumed to have
an explicit and one-to-one relationship with the interface opening displacement. This allows the
interface to transfer forces of various intensity even under the assumption of perfect cohesion, i.e.
a situation characterized by a null opening displacement. The physics behind the irreversible part
of the cohesive force o‘" depends on the particular system at hand. For example, in the case of
single craze formation, o*" can represent the average effect of the forces responsible for the craze
nucleation through secondary bond breakage. Such forces, which macroscopically appear to be
acting on the interface surface, do not originate from fibril stretching and for this reason are not
associated with a particular energy storage mechanism.

The global thermodynamic analysis presented in section 4 shows that the fields o' and & are
conjugate with respect to the global free energy of the system. This result leads naturally to
the hypothesis that the relationship between the fields '™ and 6 is governed by an equation of
evolution. It should be noted that global thermodynamics becomes an almost indispensable tool in
the thermodynamic analysis of multi-phase systems like the one considered herein (i.e. body-plus-
interface). In particular global thermodynamics is extremely useful in the analysis of composite
materials with an evolving internal microstructure.

The present theory has been shown to encompass most of the cohesive zone models available
from the literature and, as shown in section 6.2, to satisfy the third of the requirements listed above
under the assumption that the interface free energy is non-convex.
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In section 6.3 the proposed model has been shown to have another important characteristic,
namely that of naturally recovering the classical results of fracture mechanics once a macroscopic
crack propagates along the interface in a self-similar fashion. In particular, the relationship between
the interface dissipative behavior and the crack evolution law has been established.
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IN LAMINATED COMPOSITES WITH DELAMINATIONS
CONTAINING A DAMAGE ZONE
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ABSTRACT

Close examination of the delaminated surfaces of laminated polymeric composites will
often reveal the presence of a damage zone ahead of the advancing delamination. In
thermosetting polvmeric matrices, the damage zone will most likely contain micro-shear
cracks. Their presence can introduce nonlinearities to the response of the interface and
thus affect the growth of the delamination. The evolution of delaminations containing
this type of damage zone is examined. The formation of the damage zone is modeled
via a non-linear interfacial constitutive relationship that is based on a micro-mechanics
solution for distributed non-interacting cracks. The mechanical characteristics of the
intecface constitutive relationship are examined. In addition, the delamination behavior

of a laminate possessing this type of interfacial response and subjected to simulated low
velocity impact condition 1s investigated.

INTROOUCTION

Laminated polymeric composites are prone to the formation of delaminations when
subjected to low velocity impact loads. In addition to reducing the mechanical proper-
ties of the laminate, these delaminations can serve as initiators of other damage modes
and can cause the failure of the laminate. Thus, the ability to model the low velocity
impact damage process is crucial for the safe and efficient design of laminated composite
structures.

It has been found from micrographic and fractographic examinations of delaminations
that a damage zone develops ahead of the delamination front {1-9]. The mechanisms in
this damage zone are dependent on the molecular structure of the resin rich interface.
Micro-shear cracks are found in thermosetting resins and crazes are prevalent in thermo-
plastics. [n general, the tendency to develop crazes ot micro-shear cracks is dependent
on the distance between chain entanglements or crosslinks in the molecule [10]. When
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the molecular weight between side attachments is below a critical number, the crazing
mechanism is suppressed and micro-cracking is activated. The presence of this process
zone in the interface introduces nonlinearities to the interfacial tesponse and thus affects
the propagation of the delamination in the interface. Therefore, it should be included
in the low velocity impact damage analysis. Howcver, the interface region containing a
process zone i1s not modeled in most low velocity impact damage analyses and of those
analyses that do take this resin rich region into account most are for modeling linear
elastic interleaves [11-13]. Some exceptions include Ladeveze’s damage model in which
the interface is explicitly modeled [14]. In his model, the mechanical properties of the
interface are governed by internal damage variables. Since the internal state variables are
volume averaged representations of the damage state, the stresses and strains obtained
from this analysis are also averaged quantities. Lo et al. [15] accounted for the effects
of the process zone by employing the interfacial constitutive relationships developed by
Needleman {16] and Tvergaard {17]. These constitutive models assumed that the force
normal to the interface behaves in a manner similar to the interatomic forces generated
during the interatomic separation. While the aforementioned models introduce nonlin-
ear responsc 1o the mechanical behavior of the interface, these models do not distinguish
between the different mechanisms active in the process zone. The current paper will
focus on the development of delaminations in thermosetting matrix composites and thus
damage zones containing micro-shear cracks will be considered. An interface constitutive

relationship adapted from a micro-mechanical solution for a micro-cracked solid will be
emploved in the analysis.

INTERFACE MODELING

When the delaminated interfaces are examined optically under magnification, the pres-
ence of the micro-shear cracks is revealed by surface artifacts that appear as regulacly
stacked arrays of platelets. Their appearance is very much reminiscent of rows of domi-
noes that have been tipped over. This surface feature, commonly referred to as “hackles”,
is formed by microcracking perpendicular to the plane of principal stress in the resin rich
interface {4]. Morris [9] has suggested that the hackles are formed in a peeling manner
while Purslow (7] has proposed the coalescent of the micro shear cracks as the cause of
the hackles as shown in Figure 1. Experimental evidence indicates that the spacing of
the platelets appears to be related to the opening mode of the delaminated interface
[18]. Under mode I opening condition, the hackle pattern may not be present, but as
the contribution from mode II opening is increased, the spacing between the platelets
becomes smaller. Therefore, it can be assumed that the micro-shear crack spacing also
decreases with increasing mode Il loading contribution. These experimental observations
now serve as a guide in our development of an interface constitutive relationship.

In the current study, the response of the interface is assumed to behave isotropically
when no micro-cracks are present. As the load is increased and the micro-cracks ac-
cumulate, the mechanical properties of the interface are degraded in accordance with
the orientation and distribution of the microcracks. This then causes the mechanical re-
sponse to behave orthotropically. For the case of non-interacting cracks with an arbitrary
crack orientation distribution, the effective moduli for this type of material have been
calculated by Kachanov. This method is based on the superposition of the solution for
the averaged crack surface displacement of a single isolated crack subjected to remotely
applied stresses. Since the mutual positions of the cracks do not enter into the analysis
under the non-interaction assumption, the overall effect of the crack array is simply the
sum of the contribution {rom each isolated crack. While the non-interaction assumption
may not be suitable for some crack distributions, it does simplify the calculations and
vields an approximation of the mechanical response {or those distributions. The elastic
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potential of the cracked body in a state of plane stress was expressed by Kachanov (19]
as

1+ v Vo s
f(o,a) = —Q—E—gaqai,‘ - ﬁ'(okk)z + E_U:’jajkax’k (1)

where v is the Poisson ratio, E is the Young’s modulus (The subscript “o” denotes the
undamage isotropic properties and for a state of plane strain, £, is replaced with ‘l'%r
and v, with 1:,_.), 0i; are components of the stress tensor, and a,« 1s the crack dcnsit}
tensor, defined by

1 M
Qe = Z Z:l(lfnn'mnmk) (2)

where the summation is performed over the M number of cracks found in the represen-
tative area, A. I, and ny,, are the length and components of the crack surface normal of

the m*® crack, respectively. The compliance tensor, Si;kp, of the cracked solid is obtained
from ,
a
Sljkp = ‘f_- (3)
00,,00kp

Stnce the crack density tensor is a real svmmetric tensor, it can be expressed in terms
of its principal values as follows:

a,; = prey.e;, + prey ey, (4)

where p; and p; are the principal values and e, and e, are the principal vectors. Thisis a
convenient reference frame to work in as the material orthotropy axes are coincident with
the principal axes of the damage density tensor. If all the cracks in the representative

area are oriented normal to the €; axis, p; is equal to zero and the effective moduli have
been found by Kachanov to be

E =E, (5)
=5 (6)
1+ 27p,
V2 = 1, (M
Va1 = “1717207‘_7 (8)
G,

G2 = ——F——~— (9)
where G, is the undamage shear modulus. Note that these effective moduli are referenced
to the principal crack density axes. To obtain the effective properties referenced to
another set of coordinate axes, the stiffness tensor is first constructed using the quantities
shown in Equations (5-9) and then transformed to the new coordinate axes.

The crack damage tensor as defined by Equation (2) requires the knowledge of the
number of cracks in the representative area, the individual crack length and their spatial
orientation. Since there could be many micro-cracks embedded in the resin rich inter-
face, simplifying assumptions are taken to maintain tractability of the problem. Base
on experimental observations that the micro-cracks form perpendicular to the plane of
principal stress, the initial orientation can be determined from the stress state just prior
to initiation. Although as the micro-crack grows, the stress state will change and cause
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the micro-cracks to diverge from their initial orientation, it will be assumed that the
micro-crack orientation remains constant. Furthermore, subsequent micro-cracks in the
representative area will share the same orientation. Each micro-crack is assumed to
grow instantaneously to a final crack length, I, as dictated by an interfacial thickness
parameter, {,,¢, as given by

= ﬁtnnl (10)

where [ is the micro-crack length scaling factor. The accumulation of the micro-cracks
is related to the maximum interfacial separation experienced by the representative area
during the loading history in the following manner

7 = A\Max (:t ) (11)

int

where 7 1s the number of micro-cracks in the representative area, u, is the tangential
interfacial separation, and ) is the micro-crack accumulation parameter. Thus, when the
interface is only opening in mode I, there will not be any accumulation of micro-cracks

and as the mode II separation is introduced, the micro-cracks evolve accordingly. Finally,
the failure of the interface is defined to occur when

u [ u 2 U, 2
- i +{— > 6cr1 12
ttnt * \/ (tinl) (t:nl> - ‘ ( )

where %, 1s the normal component of the interfacial separation and &,,,, is a critical
strain-like constant. The above desciption is similar to the phenomenological models
previously proposed by Needleman [16] and Tvergaard [17]

PROBLEM APPROACH

This interfacial constitutive model is incorporated into an in-house finite element code
to facilitate the analysis. The damage zone is modeled in a manner similar to the
Dugdale-Barenblatt cohesive model [20, 21]. In this code, the delamination propagates
along the prescribed inter-element boundaries on which the tractions are specified by the
interfacial constitutive relationship. Due to the nonlinearity introduced by the micro-

cracked process zone, the virtual work equation is solved in incremental form, resulting
in [22]:

/ ClinAexbAe;;dV = / TT 87§ Aw;dS —~ / o[;60ei;dV (13)
v av v

where C,j; is the material tangent modulus tensor, €ij is the infinitesimal strain tensor,
T: is the traction vector, Auy; is the displacement increment vector, and o;, is the stress
tensor. Also, the domain of interest has interior V and boundary V. The superscript 7
and 7+ A7 denote quantities at time 7 (which are assumed to be known) and quantities
at time T + A7, respectively. In order to focus on the effects of the interface model, the
modulus tensor, Cijki, 1s everywhere constant and linear elastic except at the interface.
The approximate nature of Equation (13) is due to the deletion of the higher order terms
in Ay, during the the incrementalization process. To account for this approximation, a
Newton-Raphson iteration scheme is employed for each increment of boundary tractions.
The displacement increment is thus successively updated as follows for the j** iteration:

{Au}; = {Au}, -1 + {24}, (14)
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where {AAu}, is obtained by solving the following on the j** jteration:

[K]"{adu}, = {F7F27} - {R7*27}, (15)

where {K] is the global stiffness matrix, {F} is the global force matrix, and {R} is the
global reaction matrix.

Equations (14) and (15) are solved recursively until the following convergence criterion
ts satisfied:

W audl, — I Aufl,_, 5
~ T
I (10)

where 7., 15 a user specified convergence tolerance

and the quantities bracketed by the
double vertical bars are the Euclidean norms.

COMPUTATIONAL RESULTS

[t was mentioned previously that the response of the interface 1s dependent on the
number of micro-cracks, the individual crack lengths, and the spatial orientation of the
micro-cracks. How these factors affect the mechanical response will be examined in this
section. This is followed by an analysis of a laminate possessing this type of response at
the interfaces.

In this section, all the micro-cracks are assumed to be oriented at 45° unless otherwise
specified and the undamaged mechanical properties shown in Table 1 are used in the
calculations. The first factor to be examined is the crack density. Since the number of
micro-cracks, as shown in Equation (11), is related to the maximum shearing interfacial
displacement via the parameter A, this parameter serves as a convenient representation
of the crack density when comparing the effective properties at a given interfacial dis-
placement. Figures 2 and 3 show the effective values for two components of the stiffness
tensor. Cp, represents the component normal to the plane of the interface and G, the
shearing component. For A = 0.0, no micro-cracks are accumulated and thus the linear
elastic response is obtained. At other values of \, it is observed that the majority of
the stiffness reduction occurs during the early part of the damage accumulation. The
stiffness normal to the interface shows the greater percentage change of the two compo-
nents to the accumulation micro-cracks. In both cases, the effective properties appear to
approach “saturated” values as the micro-crack density increases. This is in accordance
with the expressions for the effective moduli shown in Equations (5-9), but these “sat-
urated” properties may not be reached in the analysis or in the actual material as the
interface may suffer catastrophic failure at a lower crack density.

The effects of the micro-crack length on the normal and shearing components of the
stiffness tensor are shown in Figures 4 and 5. In this set of data, the micro-crack
lengths are normalized by the interfacial thickness parameter, ¢,,;, to yield the scaling
factor, 3. The most distinct feature of this set of results is the manner in which the
mechanical properties are reduced. For the shorter normalized lengths, the decrease in
the effective stiffnesses is more gradual than for the longer micro-crack lengths. The
results for 8 = 0.2 appear to decrease linearly as compared to the results for the other
micro-crack lengths. While the trends observed for the various micro-crack lengths are
similar to those observed for the various crack densities, the effects of changing the micro-
crack length are more pronounced as the crack density tensor defined in Equation (2) is
dependent on the micro-crack length to the second power and the number of micro-cracks
only to the first power.

The last parameter to be examined is the orientation of the micro-cracks. As shown
in Figure 6, the normal stiffness component, C,,, decreases with an increasing number
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of micro-cracks. The majority of the decrease occurs at the early stages of damage
accumulation with the smaller angles showing the most decrease in stiffness. For a
given number of micro-cracks, the change in the effective stiffness for a change in the
orientation angle is greatest in the vicinity of 45°. When the orientations are near 0° or
90°, variation in the orientation angles has only a relatively minor effect on the effective
stiffness. On the other hand, the shearing stiffness exhibits the opposite trend, as shown
in Figure 7. The effective shearing stiffnesses for angles between 30° and 60° are almost
identical for a given number of micro-cracks. Furthermore, the effective shear stiffness
response is identical for angle pairs that are oriented the same number of degrees above
and below 45° (eg. 15° and 75°.) Finally, the results indicate that the effective shear
stiffness curves intersect at a common point for a non-zero number of micro-cracks. The
order of relative stiffnesses at a given damage state reverses at this point.

The results presented in this parametric study reflects the mathematical characteris-
tics of the interfacial constitutive model. This should be correlated with experimental
measurements to determine the range of response in which the model assumptions are
valid. Consideration must be taken when evaluating the assumptions to the possibility
that the interface mav have failed before reaching some of these responses. In addition,
experimental measurements of the energy required to separate the interface will assist in
the selection of the model parameters.

Now that the characteristics of the interfacial constitutive model have been examined,
some of its effects on a laminated composite is examined. Because of the interest in the
development of low velocity impact induced delaminations, the analysis will be set up
to approximate the low velocity impact damage event. At the present time, the analysis
i1s model as a two dimensional end-clamped center-loaded bending problem. The impact
induced mid-span displacement is simulated by monotonically increasing displacement
applied under quasi-static conditions. The stresses in the individual layers and the resin
rich interface are obtained from the finite element analysis. Delamination propagation is
evaluated at each displacement increment and if the conditions are sufficient for propaga-
tion, the amount of growth is calculated and the corresponding changes in the interfacial
properties are updated for the next displacement increment. This procedure is repeated
until the maximum mid-span displacement is reached.

The end-clamped center loaded bending configuration shown in Figure 8 is utilized for
the analysis. This laminate has a [04/904; stacking sequence and possess the ply level
mechanical properties shown in Table 2. The interfacial parameters are listed in Table
3. Due to the low transverse strength of the lamina, a transverse matrix crack will often
appear in the mid-span of the 90° layer upon the application of the displacement. This
transverse matrix crack then serves as the initiation point for the delamination at the
0°/90° interface. In order to focus on the evolution of this delamination, the transverse
matrix crack is assumed to exist prior to the application of the mid-span displacement.
Since the damage state is assumed to be symmetric about the mid-span, only the right
half of the span has been modeled by the finite element analysis.

Figure 9 shows the evolution of the delamination with respect to the mid-span dis-
placement for several values of the micro-crack accumulation parameter, A. The results
indicate that the case with the largest value of the A (A = 1.0E5) has the highest rate of
delamination growth while the lower values of \ (M = 1.0E2, 1.0E1, 1.0) have the slow-
est rates of delamination growth. There are only minor differences in the delamination
evolution predicted by the lower values of \. Since these values translate to a smaller
number of micro-cracks, the delamination response may be close to that of a laminate
with a linear elastic interface. Common to all the cases considered is the increase in the
rate of delamination growth when the delamination reaches a normalized length of 0.1.
As shown in Figure 10, this increase cortesponds to a change in the mode of interfacial
separation. The delamination starts out opening in a mode [I dominant manner, then
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changes to mode | dominance when the “critical” delamination length is reached. The
switch to mode I dominance would indicate a reduction in the influence of the micro-
crack damage zone as the delamination propagates. This is because the accumulation
of the micro-cracks, in this model, is dependent only on the tangential component of
the interfacial displacement. However, by changing the laminate stacking sequence it is
possible to give the damage zone an increasing influence as the delamination grows.

The reaction force at the point of mid-span displacement application is shown in Figure
I1. This result corresponds to A\ = 1.0E5. As the mid-span displacement is increased
and the delamination grows, the transverse stiffness of the laminate decreases. While the
response appears to be relatively smooth, close up examination of the force-displacement
response indicates instabilities in the form of sudden drops in the reaction force when
the delamination grows. Figure 12 shows the drop in the reaction force caused by the
delamination initiation. After this drop, the reaction force increases with increasing mid-
span displacement. The next drop occurs when sufficient micro-cracks have accumulated
in the damage zone for the delamination to advance. From Figure 11, it can be surmised
that the transverse stiffness after the sudden force drop is less than the stiffness prior
to the delamination propagation. Similar behavior has been observed experimentally
by Jackson and Poe for quasi-isotropic laminates :23]. They noted that the ability to
predict the damage dependent reaction force is important in the use of the impact force
as a scaling parameter for the impact response of laminates.

CONCLUDING REMARKS

The formation of a damage zone containing micro-shear cracks and located ahead
of a delamination crack is accounted for in this analysis of delamination evolution in
polymeric laminated composites. A sample of the results is presented in this paper.
In the development of the interfacial constitutive relationship, consideration is given
to the geometric characteristics of the micro-cracks. Since this interfacial relationship
is based on a micro-mechanics solution that assumes the non-interaction of the micro-
cracks, experimental verification must be performed to determine the range of responses
in which this assumption is valid for the current application. The process in which the
micro-cracks lead to the failure of the interface also requires further examination. Two
possible sequences are mentioned in this paper. Both seem plausible and their occurrence
is most likely dictated by the loading condition. The interfacial failure criterion should
be updated to reflect this. These issues will be the subject of future investigations.
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Table 1. Undamaged Isotropic Interfacial Constitutive Properties

Eo || 1LAMsi (9.65GPa)
v, 0.3
G, || 0.5 Ms: ( 3.45GPa )

Table 2. Plv Level Mechanical Properties for Laminates Tested

E, 17.4 Ms: (120.0 GPa)
E, | 1.4 Ms: (9.8GPa)
E. || 1.4 Ms: (9.8 GPa)
G:y || 0.8 Ms: (5.2GPa)
Gy: | 05Msi  (3.5GPa)
Viy 0.3

Vy: 0.3

Table 3. Interfacial Model Parameters for End-Clamped
Center-Loaded Bending Test Case

E, 1.4 Msi (9.65GPa)
Vo 0.3

Go || 0.5 Ms: (3.45GPa)
bcree || 0.0058 in. (0.15mm)

A 100000.0
Lint 0.0002:n. (0.0l mm)
3 1.0

66



|
=t 7 s -

before before
l
l
\
~L 4 4 Bl
- after ‘ after
I
(a) (b)

Figure 1. Possible modes of hackle formation: a) peeling [9] and b) micro-crack coales-
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ABSTRACT

The durability and damage tolerance of laminated composites are critical design
considerations for airframe composite structures. Therefore, the ability to model damage
initiation and growth and predict the life of laminated composites is necessary to achieve
efficient and economical structural designs. The purpose of the research presented in this
paper is to experimentally verify the application of the damage model developed by the
authors to predict progressive damage development in a toughened material system.
Damage growth, stiffness degradation, and residual strength were experimentally
determined for cross-ply and quasi-isotropic IM7/5260 graphite/bismaleimide laminates due
to monotonic and tension-tension fatigue. The damage model, which has been
implemented into a finite element code, was used to predict the stiffness loss and residual
strength of unnotched and notched laminates. The model predictions were in good
agreement to experimental results for several different fatigue loading histories and several

different laminate stacking sequences.
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Introduction

Because of their light weight and high specific stiffness, laminated continuous fiber-
reinforced composite materials are being used in some primary components in aircraft
structures. However, when subjected to high service loads, environmental attack, impact,
or a combination of any or all of the above, laminated composite materials may develop
damage. As the service load or the time in service increases, damage develops and grows
and could eventually reduce the residual strength of the structure.

There are four main types of damage. These are matrix cracking, fiber-matrix interface
debonding, delamination, and fiber fracture. Usually, matrix cracking and fiber-matrix
interface debonding are the first forms of damage to occur, followed by delamination, and
finally fiber fracture resulting in catastrophic failure. While matrix cracking is usually
arrested at the fibers or adjacent plies, it will result in a redistribution of load to the
surrounding regions. As a result, these surrounding regions contain stress fields which are
favorable to the initiation and propagation of additional damage. During the accumulation
of subcritical damage, changes in material stiffness and strength results in the load
redistribution until the principle load-carrying plies are unable to support the load, in which
case, catastrophic failure occurs.

The initiation and propagation of damage is one of the problems in using laminated
continuous fiber composite structures. To address durability and damage tolerance
requirements, damage must be modelied and methods developed to predict the residual
strength and life of composite structures. For example, one of the most complicated
structural configurations is that of built-up laminated composite structures connected by
mechanical fasteners such as rivets. These laminates with fastener holes develop local
damage that cannot be easily treated using stress concentration factors. Another example is
the non-visible damage that develops during foreign object impacts and ground handling
accidents. Current methods for treating these local damage details are empirical and very

conservative. Therefore, an accurate model of the damage initiation and propagation will



enhance current analysis and design capabilities thus leading to improvements in structural
efficiency.

Many damage progression models are being developed to model damage and predict
life. An example of the type of microcrack damage that is currently being studied by
damage models is shown by the x-ray radiograph in Figure 1. This damage is both
stacking sequence dependent and loading history dependent. An overview of damage
resulting from fatigue loading in composites has been presented by Reifsnider [1,2]. Some
researchers have tried to model this damage by considering each crack as an internal
boundary and the stress or displacement fields are obtained either in closed form or
numerically, such as in finite elements. This approach works well as long as there are a
relatively small number of cracks. Talug and Reifsnider [3] have obtained finite difference
approximate solutions to equilibrium equations to solve for interlaminar stresses in
composite laminates. The "damage tolerance/fail safety methodology” developed by
O'Brien [4] is an engineering approach to ensuring adequate durability and damage
tolerance by treating only delamination onset and the subsequent delamination accumulation
through the laminate thickness. Chang [5] developed a progressive damage model for
notched composite laminates subjected to monotonic tensile loading. This particular model
assesses the damage and predicts the ultimate tensile strength in laminates with arbitrary
ply-orientations via an iterative combination of stress analysis and failure analysis. Chamis
[6] studied structural characteristics such as natural frequencies and buckling loads and the
corresponding mode shapes during progressive fracture of angle-plied polymer matrix
composites. This study concluded that the individual nature of the structural change was
dependent on laminate configuration, fiber orientation, and the boundary conditions. The
model proposed by Talreja {7,8,9] incorporates internal state variables (ISV's) for matrix
cracks and delaminations and exhibits ply stacking sequence dependence. The ISV's are
strain-like quantities which represent the damage as volume averaged quantities, 1.€., 2

continuous medium.



The treatment of a damaged volume of material as a continuous medium and the
representation of the damage with averaged quantities was first proposed by Kachanov [10]
in 1958 and is referred to as continuum damage mechanics. From this concept of
averaging the effects of microcracking in a small local volume, the authors developed a
damage model for laminated composites [11-16]. This damage model utilizes internal state
variables (ISV's) and is phenomenological; however, it is formulated at the ply and
sublaminate level and accounts for the influence of stacking sequence. The model has been
recently implemented into a finite element analysis code and has the capability to predict
damage growth and residual strength for monotonic and tension-tension fatigue loading
histories. The model was originally developed for brittle graphite/epoxy composite
systems but has been extended to also address toughened polymer matrix composites. This
paper will present results for both unnotched and notched specimens subjected to several

different monotonic and fatigue loading histories.

The Allen and Harris Model

The damage model of Allen and Harris [11-16] was originally developed to model the
behavior of microcrack damage in brittle epoxy systems and has recently been extended to
toughened polymer systems. The model predicts the growth of intraply matrix cracks for
monotonic tensile loadings and for tension-tension fatigue, the associated ply level damage-
dependent stress and strain states, and the residual strength of laminates with geometric
discontinuities. The model also accounts for the effects of delaminations but uses an
empirical relationship that requires the user to supply an estimate of the delamination area.
The empirical relationship must be used because the model currently does not calculate free
edge interlaminar stresses. A summary of the model can be found in the literature [17].
The model uses internal state variables (ISV) to represent the local deformation effects of

the various modes of damage. Loading history dependence is modelled by ISV damage



growth laws. The progression of damage is predicted by an iterative and incremental
procedure outlined in the flowchart shown in Figure 2. This entire progressive failure
analysis scheme has been implemented into the finite element formulation in the NASA
Computational Mechanics Testbed (COMET) {18] computer code. The first block of
Figure 2 is a description of the information needed as model input. A FORTRAN code
consisting of the damage dependent constitutive model and a damage growth law for matrix
cracking was incorporated into a classical lamination theory analysis to produce effective
lamina and laminate properties for unnotched laminates. The program is called FLAMSTR
(Fatigue LAMinate STRess) [19] and makes up the first constitutive module. The fourth
block is a damage dependent finite element analysis code [18] from which the second
constitutive module performs a ply level elemental stress analysis and simulates damage
growth via damage growth laws for each element. The damage growth calculations, block
six, are used to update the damage state, block seven, for the notched laminates. For
unnotched laminates, only the first constitutive module is needed to update the damage
state.

The material property descriptions required for the model include standard ply stiffness
and strength data determined in the usual manner. In addition, the tension-tension fatigue

matrix crack growth law must be determined from test data obtained from the [0/90,/0];
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Experimental Procedures
The material chosen to experimentally verify the continuum damage model was

IM7/5260 graphite/bismaleimide laminates. This material system was fabricated with a



toughened interlayer between the plies of the laminate. Cross-ply and quasi-isotropic
laminates were tested with the following stacking sequences: [0/902/0]s, [0/903]s, [0/45/-
45/90]s, and [90/-45/45/0]s. The laminates were cut into 2.54 cm x 25.4 cm (1"x10M
coupons, both unnotched and notched. The notched laminates had a 6.35 mm (1/4 inch)
hole drilled in the center.

Each laminate was subjected to tension-tension fatigue up to 100,000 cycles at a
frequency of 5 Hz and a stress ratio of 0.1. Prior to the fatigue tests, several unnotched
and notched specimens from each laminate were monotonically loaded to failure to measure
the ultimate strength and the open-hole residual strength of each laminate. This data
provided a baseline for assessing the effects of the fatigue loading history on residual
strength. For each cross-ply laminate, three replicate specimens were subjected to a
maximum tension fatigue stress of 30% of the ultimate failure strength of the laminate and
an additional three replicate specimens were tested at 60% of ultimate. For the quasi-
isotropic laminates, three replicate specimens were subjected to a maximum tension fatigue
stress of 50% of the ultimate failure strength of the laminate and an additional three were
tested at 60% of ultimate. In situ edge replicas and x-ray radiographs to characterize
damage were taken throughout the testing and the specimen did not have to be removed
from the load frame. The edge replicas and x-ray radiographs provided the means to
measure matrix crack and delamination surface areas. A Direct Current Displacement
Transducer (DCDT) with a 4" gage length was used to measure strain and remained
secured to the specimen throughout the test. The fatigue test was stopped periodically to
take edge replicas and x-rays, and to monotonically load the specimen to record the stress-
strain behavior. At the end of 100,000 fatigue cycles, the specimens were monotonically
loaded to failure to record the post-fatigue residual strength of each laminate.

The material damage parameters for the model were determined from the fatigue tests of
the unnotched [0/90,/0] laminate. The crack surface area as a function of fatigue cycles

was measured from the edge replicas and the x-ray radiographs {20]. From this data, the



matrix crack internal state variables were calculated and used to determine the material
parameters. The parameters are then used in the matrix crack growth law to compute the
predicted damage evolution, stiffness loss, and residual strength for the other 3 laminate
stacking sequences. For those laminates exhibiting significant delaminations, the
delamination surface area and locations were determined from the x-ray radiographs and

edge replicas and used in an empirical relationship contained in the damage model.

Comparisons of Model Predictions to Experimental Results
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a damage dependent finite element code installed in the COMET (18] to predict reductions TV [LfFE”I"ZK
in stiffness due matrix cracking. Predictions for the [0/903]s laminate are illustrated in ot
Figure 3. The predicted reductions in stiffness are in close agreement with the experimental
stiffness loss which is due solely to matrix cracking in the 90 degree plies. The distinct
trends for the two different constant amplitude maximum stress levels are accurately
predicted.

The [0/45/-45/90] laminate exhibited edge delaminations primarily at the -45/90
interface. The experimentally measured delamination surface areas were used to predict
stiffness loss due to delaminations and the matrix crack growth law was used to analyucally
predict the growth of matrix cracks in the various plies of the laminate. The experimental
results are compared to the model predictions for the two maximum fatigue stress levels in
Figuré\é}l. Once again, the model predictions are accurate. The stiffness loss in the quasi-

isotropic laminate was more significantly effected by the delaminations than by the intraply

matrix cracks.



The effects of different delamination growth patterns was illustrated by the different
behavior of the [90/-45/45/0]5 and {0/45/-45/90]5 quasi-isotropic laminates. The x-ray
radiographs reveiled that the delaminations in the [90/-45/45/0}5 laminate were localized
whereas the [0/45/-45/90] laminate exhibited large prominent edge delaminations. The
stiffness loss of a [90/-45/45/0]s laminate is given in Figure 5. Again, the model correctly
predicted the stiffness behavior as a function of the fatigue loading history. (Close
attention should be paid to the differences between the effects of edge delaminations and
local delaminations [21].)

The analysis of the notched laminates yielded good results as well. Figure 6 shows the
damage state in the open-hole specimens for the two different stacking sequences. It would
be expected that the matrix crack in the 0-degree ply adjacent to the hole (axial split) would
have a significant effect in reducing the stress concentration at the notch. This would
increase the global displacements of the laminate prior to failure. The damage dependent
finite element code [18] implemented into the NASA COMET was used to calculate matrix
crack damage growth, laminate stresses and strains, and far field displacements. The finite
element mesh shown in Figure 7 is a quarter section of the notched laminate. The finite
element code predicts the damage state in each element as a function of the local element
stresses. An iterative procedure is used to calculate the element damage-dependent
properties and associated load redistribution throughout the finite element model. The
analytical far field displacements calculated over a 4" gage length are compared to the
experimental stiffness loss in Figure 8. This figure illustrates the ability of the code to
predict separate trends in stiffness reductions due to mode I matrix cracking for different
constant amplitude stress levels and layups for a spatially varying damage state. Edge and
local delaminations were included in the predictions and were found to have very litde
effect, especially compared to the mode I matrix cracking of the axial split for the [0/903]s
laminate. The comparison of the results for the two laminates given in Figures 6 and 8

confirms the ability of this model to predict damage growth as a function of the laminate



stacking sequence. The [0/903]s laminate has more severe axial splitting, i.e. more mode I
matrix cracking, thus the predicted loss in stiffness due to mode I matrix cracking is larger.
The reductions in stiffness are greater for this laminate because more load is transferred

away from the stress concentration at the hole.

Residual Strength

Residual strength predictions were also made for the two laminates and damage states
shown in Figure 6. A more refined finite element mesh 1s required for residual strength
predictions than for stiffness loss predictions. The mesh shown in Figure 9 was used to
predict the residual strength. The mesh near the hole was refined in order to try to capture
the local stress effects produced by the pronounced axial split in the 0-degree plies. The
comparison of the model predictions to the experimental results are shown in Figure 10.
The model uses a simple maximum strain failure criterion for the fibers as determined from
the ultimate tensile strength of the 0-degree unidirectional laminate. When the fiber oL
direction strain in the principal load-carrying ply reaches the fiber failure strain, the element- CUPL’HZ CORET
will not sustain additional load, ie, the material is assumed to exhibit elastic-perfecty plastic
behavior. Progressive failure is then predicted by an iterative process to account for the
interelement load redistribution after an element has been determined to have fiber fracture.
The loads applied to the model boundaries are then incrementally increased until complete

failure occurs. The fiber failure criterion and the computational procedure are currently

under investigation. The authors believe the accuracy of the model will be greatly

improved by implementing a more sophisticated failure criterion.

Conclusions
The damage model developed by Allen and Harris was used successfully to predict the

stiffness degradation and residual strength of the IM7/5260 toughened matrix composite



material. Experimental verification of the model was established by comparing the stiffness
loss of cross-ply and quasi-isotropic laminates with and without open holes for tension
fatigue loadings. Residual strength predictions were also reasonably close to the
experimental values. The model has predictive capability for intraply matrix cracks and
correlative capability for delaminations. The model successfully predicted both the effects
of laminate stacking sequence and loading history on damage growth and stiffness loss.
The ability of the model to predict damage growth in the open hole specimens was
particularly encouraging. These results suggest that the model is appropriate for spatially
varying damage developing in strain gradient fields and not confined to uniform damage
that develops in the gage length of an unnotched uniaxial test specimen. The spatial
variation in damage is treated through the finite element discretization since the damage is
assumed to be uniform within an element. The empirical relationship for delamination
provided trends in stiffness loss that agreed with the experimental trends. It should be
noted, however, that the predictive capability of this model would increase dramatically if
delamination growth laws were available. Also, a more sophisticated fiber failure criterion
and computational procedure needs to be developed to improve the accuracy of the residual

strength predictions.
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Figure 1 - Tension-Tension Fatigue Damage in a Notched
[0/45/-45/90]s IM7/5260 Laminate
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Delamination Evolution in Composites
Using a Cohesive Zone Model

D. C. Lo, F. Costanzo, and D. H. Allen

Texas A&M University, Texas, U.S.A.

1. INTRODUCTION

It has been found from micrographic and fractographic examinations of delam-
inations that a damage zone develops ahead of the delamination front in many
polymeric composites [1-3]. The presence of this damage zone in the interface in-
troduces nonlinearities to the interfacial response and thus affects the propagation
of the delamination in the interface. Lo et al. [4-6] previously modeled the re-
sponse of the damage zone by employing the interfacial constitutive relationships
developed by Needleman (7] and Tvergaard [8]. While the aforementioned models
introduce nonlinear response to the mechanical behavior of the interface, these
models do not distinguish between the different mechanisms active in the damage
zone. The current paper will focus on the development of delaminations with a
damage zone containing micro cracks. This type of damage zone is usually found in
thermosetting matrix composites. An interface constitutive relationship adapted

from a micro-mechanical solution for a micro-cracked solid will be employed in the
analysis.

2. INTERFACE MODELING

In the current study, the response of the interface is assumed to behave isotrop-
ically when no micro-cracks are present. As the load is increased and the micro-
cracks accumulate, the mechanical properties of the interface are degraded in ac-
cordance with the orientation and distribution of the microcracks. This then causes
the mechanical response to behave orthotropically. For the case of non-interacting
cracks with an arbitrary crack orientation distribution, the effective moduli for
this type of material have been calculated by Kachanov [9]. This method is based
on the superposition of the solution for the averaged crack surface displacement
of a single isolated crack subjected to remotely applied stresses. Since the mutual
positions of the cracks do not enter into the analysis under the non-interaction as-
sumption, the overall effect of the crack array is simply the sum of the contribution



from each isolated crack. If it is assumed that all the cracks in the representative
area are oriented in the same direction, the effective moduli are

E,=E, (1)

E,

Ey,= ——

2 1+27p (2)
Via =V, (3)

VO
va1 = oo T+ omp (4)

G,

G2 =

1+ (277%:—) p (%)

where E,, v,, and G, are the undamage Young’s modulus, Poisson’s ratio, and

shear modulus, respectively. p is the micro-crack damage variable and is defined
as

1 M
= _ ? 6

where the summation is performed over the M number of cracks found in the
representative area, A. I, is the length of the m** crack. Note that these effective
moduli are referenced to the physical crack axes. (The subscripts “1” and “2” de-
noting the axes parallel and perpendicular to the length of the crack, respectively.)
Base on experimental observations that the micro-cracks form perpendicular to the
plane of principal stress, the micro-crack orientation can be determined from the
stress state in the interface.

The micro-crack damage variable as defined by Equation (6) requires the knowl-
edge of the number of cracks in the representative area and the individual crack
length. Since there could be many micro-cracks embedded in the resin rich inter-
face, simplifying assumptions are taken to maintain tractability of the problem.
Firstly, each micro-crack is assumed to grow instantaneously to a final crack length,
[, as dictated by an interfacial thickness parameter, ¢;,¢, in the following manner

[ = Btine ' (7)

where B is the micro-crack length scaling factor. Second, the accumulation of

micro-cracks is related to the highest principal stress experienced by the represen-
tative area as shown

7= AMax (p,...) (8)

where 7 is the number of micro-cracks in the representative area, op is the

max

maximum principal stress at a given stress state, and )\ is the micro-crack



accumulation parameter. Finally, the failure of the interface is defined to occur

when
u un \2 ue \ 2
n n t
> beri
fme (t.-nt) +(t.-m) = Tert ®)

where u, and u, are the normal and tangential components of the interfacial sep-
aration, respectively, and &, is a critical strain-like constant. The above descrip-
tion is similar to the phenomenological models previously proposed by Needleman
(7] and Tvergaard [8]. This interfacial constitutive model is incorporated into an
in-house two dimensional finite element code to facilitate the analysis [4-6]. The
damage zone is modeled in a manner similar to the Dugdale-Barenblatt cohesive
model [10,11]. In this code, the delamination propagates along the prescribed
inter-element boundaries on which the tractions are specified by the interfacial
constitutive relationship. Due to the nonlinearity introduced by the micro-cracked
cohesive zone, incremental and iterative solution techniques are employed with the
finite element algorithm. Delamination propagation is evaluated at each load step.

3. COMPUTATIONAL RESULTS

This model was applied to the analysis of low velocity impact induced delam-
ination damage. The impact problem was modeled as a two dimensional three-
point bending problem where the impact induced displacement was simulated by a
monotonically increasing displacement applied at the mid-span under quasi-static
conditions. The stresses in the individual layers of the laminate and the resin
rich interfaces were obtained from the finite element analysis. To focus on the
effects of the interface model, the mechanical properties of the individual layers
were everywhere constant and linear elastic. The accumulation of micro-damage in
the interface was evaluated at each displacement increment and the corresponding
changes in the interfacial properties were updated for the next displacement incre-
ment. This procedure was repeated until the interface fails and the delamination
advances.

The three point bending configuration shown in Fig.1 was utilized for the anal-
ysis. This laminate has a [904/0s], stacking sequence and possess the ply level
mechanical properties shown in Table 1. The interfacial parameters are listed
in Table 2. Due to the low transverse strength of the lamina, a transverse ma-
trix crack will often appear in the mid-span of the bottom 90° layer upon the
application of the displacement. This transverse matrix crack then serves as
the initiation point for the delamination at the bottom interface. In the cur-
rent test case it was assumed to exist prior to any mid-span deflection. Fur-
thermore, the damage state was assumed to be symmetric about the mid-span,
thus only the right half of the span was modeled by the finite element analysis.
In figure 2, the model predicted delamination evolution is shown along with the
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Figure 1. Schematic of the 3-point bending test case.

Table 1. Ply Level Mechanical Properties

E. | 174 Msi (120.0GPa)
E, [14Msi  (9.8GPa)
E, |1.4Msi _ (9.8GPa)
Gy |j 0.8 Msi (5.2GPa)
Gy: | 0.5 Ms1 (3.5GPa)
Uzy |1 0.3

. 103

v,

Table 2. Interfacial Model Parameters for 3-Point
Bending Test Case

E, [ 1.4Msi (9.65GPa)
v, (0.3 :
G, || 0.5Msi (345GPa)| -
bcrie || 0.02in. (051mm )|
A 100.0
tine | 0.85 x 107410, ( 022 x 10" mm )
5} 1.0
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Figure 2. The accumulation of delamination damage in the [904/0s) laminate.

experimental data obtained from displacement controlled three-point bend tests.
Damage initiation occurred at a lower mid-span displacement than those observed
experimentally. This was attributed to the prior existence of the matrix crack in
the finite element model. However, the model predictions were in good agreement
with the experimentally observed delamination evolution in the region of the inter-
face away from the matrix crack. To remedy the early delamination initiation, the

matrix crack can be modeled as an interface and allowed to evolve as the mid-span
displacement is applied.

4. CONCLUDING REMARKS

The formation of a damage zone containing micro-shear cracks and located
ahead of a delamination crack is accounted for in this analysis of delamination
evolution in polymeric laminated composites via a cohesive zone model. In the
development of the interfacial constitutive relationship, consideration is given to
the geometric characteristics of the micro-cracks. Since this interfacial relationship
is based on a micro-mechanics solution that assumes the non-interaction of the

micro-cracks, further investigation is required to determine the range of responses
in which this assumption is valid.
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DAMAGE EVOLUTION IN VISCOELASTIC COMPOSITES
WITH DELAMINATIONS CONTAINING A PROCESS ZONE

D.C. Lo and David H. Allen
Center for Mechanics of Composites
Texas A&M University
College Station, TX 77843-3141

ABSTRACT

The development of delamination damage in a viscoelastic laminated composite is
examined in this paper. Mechanical response at the ply level is obtained from microme-
chanics in which the matrix is assumed to possess viscoelastic behavior. This model
accounts for the process zone that forms ahead of the delamination via nonlinear in-
terfacial constitutive responses. The transformation of this process zone into a pair of
delaminated surfaces is dictated by the interfacial opening displacement. Simulations
of delamination evolution in cross-plied laminates subjected to displacement controlled

three-point bending indicate a considerable amount of damage occurs while at constant
mid-span displacement.

INTRODUCTION

Laminated polymeric composites are susceptible to delamination damage when sub-
Jjected to low velocity impact loads. This type of damage can be very detrimental to the
structure as the mechanical properties can be greatly reduced. The delamination can
further serve as initiators of other damage modes and can cause the catastrophic failure
of the structure. In order to produce safe and efficient laminated composite structure,
the capability to predict the effect of the delamination damage on the component and
the subsequent response must be developed.

It has been observed that a process zone develops ahead of the delamination front.
The presence of this process zone in the interface introduces nonlinearities to the inter-
facial response. This in turn affects the propagation of the delamination in the interface
and thus the overall response of the laminate. It is therefore important to include the
effects of the process zone into the delamination damage analysis. Lo and Allen [I]
have accounted for the effects of the process zone in a manner similar to the Dugdale-
Barenblatt cohesive model [2, 3]. The interfacial tractions ahead of the delamination
followed the constitutive relationships developed by Needleman [4] and Tvergaard [5].



In these constitutive models the force normal to the interface behaves in a manner similar
to the interatomic forces generated during the interatomic separation. Recently, a mi-
cromechanics based interfacial model have been employed by Lo and Allen {6]- Ladeveze
approached this problem by modeling the interface explicitly in his finite element mesh.
The interfacial constitutive equation employed internal damage variable to represent the
damage ahead of the delamination [7]. These studies assumed that the nonlinearities
reside solely in the constitutive response of the resin rich interface. In the present work,
the delamination damage analysis performed by Lo and Allen [1] is extended to account
for the viscoelastic responses in the surrounding plies. The motivation for including vis-
coelastic effects arises from the current interest in using polymer matrix composites in
propulsion systems and high speed aerospace transports.

PROBLEM STATEMENT

The problem of a crack propagating through a linear viscoelastic body can be posed as
an initial/boundary value problem by replacing the physical crack with a thin cohesive
strip. This, of course, necessitates the apriori specification of the crack path. Since,
it can be assumed for the current application that the crack propagates through the
resin rich ply interfaces, the placement of the cohesive strips is known. With this in
consideration, the initial/boundary value problem is expressed mathematically as,

ojij =0 (1)
9ji = 0ij (2)
1 au‘ au,-
Gd=5 3~ 3
€ij 2(321'-'_82;) ( )
T 3¢
O’;J' =f Cijkl“a%ifl'd'r (4)

with the following boundary conditions:

u = onS; (5)
T, = oijng = T‘ on S, (6)
T =%(@) on S5 @)

and the following initial conditions (t < 0):
w(z,t) =0 (8)

d;,-(z, t) =0 (9)

where equations (1) and (2) are, respectively, the conservation of linear and angular
momentum in which o;; are cormponents of the stress tensor. The current form of these
equations assumes that the body is in static equilibrium and is absent of body forces and
moments. Equation (3) is the strain-displacement relation where ¢;; are components
of the infinitesimal strain tensor and u; are the displacement components. Equation
{4) is the constitutive equation for a linear viscoelastic material. Cijkt are components

of the relaxation modulus tensor. The tractions, T}, are prescribed along S; and the



displacements, i;, are imposed over S;. The cohesive strip is represented by the surface
{or curve in two dimensions), Si, where

S3= S +5;5. (10)

ST and S; represent the upper and lower crack surfaces, respectively. Associated with
these surfaces are their respective crack surface normals, n} and ng . In the undeformed
state, these surfaces occupy the same space, but as the body dcforms, these surfaces
separate. The distance separating the formerly coincidental points on these surfaces is
the crack opening displacement, #. Acting on this surface, Sj, is a traction, T, whose
magnitude is a function of the crack opening displacement, &. For time, t < 0, the body is
undeformed and is free from residual stresses as indicated by the initial conditions shown
in equations (8) and (9). The specific constitutive relationships for the viscoelastic body

and the interfacial traction used in the current study are presented the the following
sections.

VISCOELASTIC CONSTITUTIVE RELATIONSHIP

The relaxation moduli, C;j1, found in equation (4), represent the effective properties
of a continuous fiber reinforced polymer matrix lamina. These effective viscoelastic
properties were calculated by Zocher, et al. [8] using Hashin and Rosen’s composite
cylinders assemblage model [9]. In Zocher’s approach, the fibers were assumed to be
isotropic linear elastic and the matrix isotropic but linear viscoelastic. This enabled
the estimation of the nine viscoelastic properties for an orthotropic material with the
use of only a single constituent viscoelastic property, the matrix relaxation modulus. In
this study, the matrix relaxation modulus is obtained from experimental data and is
fitted with a Wiechert model for the numerical calculations. The expressions for these
orthotropic viscoelastic properties can be found in reference 8. Cijkt are then calculated
from these nine orthotropic viscoelastic properties.

To facilitate the numerical solution of the initial/boundary value problem, the con-
stitutive equation shown in equation (4) was rewritten in incremental form [10]. If each
component of the relaxation tensor, Ciju, is fitted by a Wiechert model such that

M

—_ t
Cijri(t) = Cijra + Z Cijr_e “iikim (11)
m=1
where
ki, . ..
Pijit, = (no summation on i,j,k,l) (12)
Cijkt,,

in which n;;i;_ is the dashpot coefficient, Cijri, is the spring constant and M is the

number of elements in the Wiechert model, then the incremental form of the constitutive
equation is

Acij = CljBent + Aa{j (13)
where
. 1 e
= G4y —_— E . —_ Pijkt
Ciu = Cijua + At m_lnuk"“ (1 ¢ m) (14)

AEH :éHAt (15)



Acf=-%" (1 - e'ﬁ:) Sijrt_(t) (16)

m=1
in which a
S,'j“"(t) = e- Fidhl Sijklm(t — Ai) (17)

Equation (4) is now replaced with its incremental form shown in equation (11) in the
mathematical statement of the initial/boundary value problem. The derivation of equa-
tion (13) can be found in reference 10.

INTERFACE MODELING

The mechanical response of the resin rich interface is governed by the deformation
mechanism occurring at the molecular level. These mechanisms include uncoiling and
straightening of molecular chains, dislocation movement, reorientation of molecular chain
segments, void formation, and chain breakage [11]. Some of these mechanisms result in
the formation of micro-cracks and crazes ahead of the delamination [12-16]. Whether
one or more of these dissipative mechanisms are activated will depend on such factors
as molecular structure, loading rate, temperature, and processing history. Moreover, the
mechanical response of the resin in the interface region may be different from that of the
response measured in bulk resin specimens. The constraints imposed by the reinforcing
fibers, especially when the resin is sandwiched between two plies with different fiber
orientations, will alter the stress state in the resin rich region and thus suppressing some
deformation mechanisms while enabling other deformation mechanisms to occur.

In the current analysis, a phenomenological constitutive model proposed by Tver-
gaard [5] is used to approximating the interfacial response. This interface model as-
sumes that the normal traction exerted on the interface during purely normal separation
behaves similarly to the interatomic forces during interatomic separation.

The interface surface tractions for the two dimensional case are described by

T. = Ea,,u,,ﬁ(l - 23+ 2% (18)
4 bn

- 27 u

T: :a—ama,,ﬂ(l—fl)\+z\2) (19)
4 &,

where

_ N2 _\ 2
Un U
/\_\/(6“) +(3) (20)
for 0 < A < 1. Complete separation occurs when A > 1. T is the interfacial traction
and u is the interfacial displacement as mentioned previously. The subscripts n and t
signify the normal and tangential components of the specific quantity, respectively. omaz
is the maximum traction acting on the interface during a purely normal separation. §
is the characteristic length and « is the ratio of the interfacial shear stiffness to the

normal stiffness. When the interface is undergoing a pure normal separation, the normal
component of traction increases to a value of 0,4, at = % then decreases to zero

at ‘;i’* = 1 as shown in Figure 1. The associated work done by this traction going from

%_’:“_‘Oto%“:lis
9

Wl¢ == ma:6n- 2]
P~ 167 (21)



Needleman refers to this as the work of separation. Thus, a larger omqez or § will result
in a greater amount of energy required to fail an interface. These two parameters also

control the initial stiffness of the interface as shown by the expression for the initial
stiffness in the mode I opening case,

aT, _ 270 maz
au" Up,u,=0 B 7 6"

. (22)

If the initial stiffness and the work of separation can be determined analytically or
experimentally, then the model parameters, 0'mq; and § can be calculated from equations
(14) and (15). Although this data is not readily available, equations (14) and (15) are
used to check whether the selected g ma: and § produce values for the work of separation
and initial stiffness that are reasonable from the physical and computational stand point.
An often encountered problem is the selection of .. and § combinations that produce
high initial stiffnesses as to result in computational difficulties.

NUMERICAL SOLUTION PROCEDURE

The constitutive models are incorporated into an in-house finite element code to fa-
cilitate the analysis. In this code, the delamination propagates along the prescribed
inter-element boundaries on which the tractions are specified by the interfacial consti-
tutive relationship. Due to the nonlinearities introduced by the micro-cracked process

zone and the viscoelastic response, the problem is solved incrementally with the virtual
work equation expressed in the following form [17):

/;C:jk,Aek(éAe.'jdVE/;]?+Ar5Au;dS—/;JIJ-6AE.'jdV (23)

where Cijii is the material tangent modulus tensor calculated from equation (13) and
Ay, is the displacement increment vector. Also, the domain of interest has interior V
and boundary S. The superscripts 7 and 7+ A7 denote quantities at time T (which are
assumed to be known) and quantities at time T + A7, respectively. The approximate
nature of Equation (23) is due to the deletion of the higher order terms in Av; during
the incrementalization process. To account for this approximation, a Newton-Raphson
iteration scheme is employed for each increment of boundary tractions. The displacement
increment is thus successively updated as follows for the j** iteration:

{au}; = {Au};_1 +{aAu}, (24)

where {AAu}; is obtained by solving the following on the j** iteration:
(KT {AAu}; = {FT+o7)  {RT+27}, (25)
where [K] is the global stiffness matrix, {F} is the global force matrix, and {R} is the

global reaction matrix.
Equations (14) and (15) are solved recursively until the following convergence criterion

is satisfied:
| Aul, =l By _
S Teal
I Aull;

(26)

where 1o 1s a user specified convergence tolerance and the quantities bracketed by the
double vertical bars are the Euclidean norms.



ANALYSIS OF DELAMINATION DAMAGE

To gain a better understanding on how viscoelastic behavior affected the low velocity
impact induced damage process, the computational simulation was set up to mimic
conditions encountered by the laminate during the low velocity impact event. The three
point bending problem, shown in Figure 2, was considered in the analysis of delamination
evolution in a laminated composite. This laminate had a {05/90;], stacking sequence and
possessed the fiber and matrix properties shown in Table 1. Listed in Table 2 are the
interfacial parameters for Tvergaard’s model. The viscoelastic results presented in this
section corresponded to the mid-span displacement history shown in Figure 3. During
the ramp up portion, the mid-span was displaced at 0.001 inches per second for the first
100 seconds to produce a maximum mid-span displacement of 0.1 inches. Following this
ramp up, the mid-span displacement was held at 0.1 inches until the simulation ended
at t=10000 seconds. For comparative purposes, the delamination evolution responses
were also generated for the same laminate but with linear elastic behavior at the ply
level. The mid-span displacement in these cases was increased at a rate of 0.001 inches
per second until a displacement of 0.1 inches was achieved. This was identical to the
ramp-up portion of the mid-span displacement history used in the viscoelastic case. In
the finite element mesh, a transverse matrix crack was positioned at the mid-span of the
bottom 90° layer to serve as the initiation point at the bottom 0/90 interface. Since the
damage state was assumed to be symmetric about the mid-span, only the right half of
the span was modeled in the analysis. Finally, a state of plane strain was assumed in the
calculations with the predicted interface opening displacements used in the determination
of delamination propagation.

Shown in Figure 4 is the predicted delamination evolution in the bottom interface of
the viscoelastic laminate. In this case, where the interfacial shear stiffness to normal
stiffness ratio, a, was 0.15, no delamination damage was predicted in the upper 0/90
interface. Furthermore, the results indicated that the majority of the delamination evo-
lution occurred after the maximum displacement has been reached. Two third of the
final delamination length was attributed to propagation during the constant mid-span
displacement period. The small amount of damage development during the ramp-up
displacement was in contrast to the linear elastic results shown in Figure 5. At the
point when the maximum displacement was reached (t=100 sec.), the delamination in
the elastic laminate was twice the length of the delamination predicted in the viscoelastic
laminate. However, the delamination for the viscoelastic case grew during the constant
mid-span displacement period and eventually exceeded the length predicted for the elas-
tic case. When the interfacial shear stiffness to normal stiffness ratio, «, was reduced
to 0.125, a comparable amount of delamination damage was predicted in the bottom
interface at t=100 seconds for both the viscoelastic and elastic cases. This is illustrated
in Figures 6 and 7, respectively. Once again no damage was predicted in the upper
interface. Subsequent delamination growth during the constant mid-span displacement

period in the viscoelastic laminate resulted in the final delamination length being almost
twice that of the elastic case.

DISCUSSION

The results presented above illustrates the effects that stress redistribution can have
on the damage evolution. For the viscoelastic cases, the mechanism for stress redistribu-
tion is due primarily to the relaxation of the viscoelastic matrix and the accumulation
of damage. It is possible, for the example shown in Figure 4, that the stress relieve due
to relaxation near the delamination front operating in conjunction with the nonlinear
response of the interface hindered the advancement of the delamination during the dis-
placement ramp-up period. On the structural scale, the shift of load due to relaxation



from the matrix dominated plies to the fiber dominated ones may have assisted damage
evolution during the constant mid-span displacement time period. From the prelimi-
nary results presented here, it appears that under certain circumstances, the viscoelastic
effects cannot be neglected in the analysis. This is exemplified by the case where the
interfacial shear stiffness to normal stiffness ratio was equal to 0.15. In this case, the
delamination predicted by assuming ply level viscoelastic response was initially less than
the elastic results, but with time, the delamination in the viscoelastic laminate actually
exceeded the elastic prediction.

In the performance of this analysis, several assumptions were taken concerning the
constitutive response of the lamina and the resin rich interface. One assumption is the
elastic response of the reinforcing fibers. While this may be a reasonable assumption
in the axial direction of the fiber, there could be a noticeable amount of viscoelastic
response in the radial direction [18]. The absence of time dependence in the interfacial
constitutive model is another area that warrants further examination. These are some
of the issues that will be addressed in the continue development of this model.
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Table 1. Lamina Elastic and Viscoelastic Constituent Properties

I Fiber: l
E, 0.40 x 10® psi
U! 0.3
7 0.6
i Matrix (Elastic):
Em 0.14 x 107 psi
Ve 0.3
Vin 0.4
Matrix (Viscoelastic):
Parameters for 11 element Wiechert model
[ Ew ][ 0.48 x 10° psi | |
1 E,.,, psi L/ i'-,%
1 0.44 x 10% 0.87 x 102
2 0.90 x 10% 0.18 x 10
3 0.19 x 10° 0.38 x 10°
4 0.39 x 10° 0.78 x 10°
5 0.78 x 10° 0.16 x 10°
6 0.14 x 10° 0.28 x 10°
7 0.20 x 10° 0.41 x 109
8 0.22 x 10° 0.44 x 10!
9 0.18 x 10® 0.37 x 1072
10 0.11 x 10° - 0.21 x 1083
11 0.81 x 10° 0.16 x 1014

Table 2. Interfacial Model Parameters Used in Test Cases.

Omaz 0.50 x 10° psi
bny & 0.15 x 10~ *in.
@ (case A) 0.150
« (case B) 0.125
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Figure 1. The response of the normal interfacial traction force to the normal separation
of the interface as model by Tvergaard [5].
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Figure 2. Schematic showing the geometry of the three point loaded {06/903], laminate
used in the analysis.
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Figure 3. Mid-span displacement input used it the three point bending viscoelastic test
cases.
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Figure 4. Accumulation of delamination damage in the bottom interface of the viscoelas-

tic {906/03), laminate with an interfacial shear stiffness to normal stiffness ratio
of 0.15 .
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Figure 5. Delamination damage accumulation in the bottom interface of the elastic
[906/03], laminate with an interfacial shear stiffness to normal stiffness ra-

tio of 0.15 .
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Figure 6. Accumulation of delamination damage in the bottom interface of the viscoelas-

tic [905/03], laminate with an interfacial shear stiffness to normal stiffness ratio
of 0.125 .
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t**t********************************************************#*t****

Delamination Analysis with Nonlinear COhesive Model
(DANCOM)

A KKK K o R Kk K K K KKK KK R Rk e sk koK kR oK ok o ok K R o K ok o ok o oK oK ok K K ok Ok Rk
MODIFIED TO INCLUDE DISPLACEMENT BOUNDARY CONDITIONS

ALSO MODIFIED TO PLANE STRAIN CONDITIONS

Routine to store force-displacement data added on March 9, 1994
by David Lo

Modified for non-zero displacement boundary conditions by
David Lo on April 18, 1994

C
(o}
Cc
C
C
*
Cc
C
[
Cc
[
C
[of
[
C
Cc
C Add modified Kachanov’s model to interface constitutive module

C by David Lo on June 9, 1984

(o}
***************#*********t*********t******#t*****#*******tt************

REAL*8 FGL(2400),D0S(1500,4),DE(1500,3),

1 Q(2400),0S7(1500,4) ,DET(1500,3) ,KG(2400,600),

2 FG(2400),FORCE(2400),DN(500),.DT(500)
COMMON/ELAS1/S(1500,4) ,E(1500,3),E0(1500,3) ,DSTRAN(3),
1 DSTRES(4)
COMMON/PLAS1/ALPHA(4, 1500) ,EPBAR(1500),SIGBAR( 1500),

1 IPLAS(1500),EPSP(1500,4) ,DEPSPT(1500,4),

2 DEPSP{1500,4)

INTEGER NODE( 1500, 3) ,NDOF ( 1500)
COMMON/CHIST/RTOL.NN,NEL,NF,NDBC,IDUMP.IPRI.ISREF.
1 IEQUIT,ITEMAX,ITEMP, IINT
COMMON/AREA2/NODE , NDOF
COMMON/AREA4/Q
COMMON/AREA7/NSTE, INCR, ITER
COMMON/AREA10/DST,DET
COMMON/LOAD/TIMV(1, 1000),RV(1, 1000), INODE(100), ICURVE(100),
1 DINC(1000),DPMINC(1000),DMULT( 1, 1000)
COMMON/BANDED/MAXBW
COMMON/HOMOG/SIG1AV ,DEBAR1 1
CcX COMMON/INTFAC/NINT1,NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA
COMMON/INTFAC/NIFEM,NIFGP,ITGPL(10,2), ITCON(500,2),
SIGMAX(10),DELTAN(10),DELTAT(10),ALPH(10),
ETA(10) ,DBFAC(10),DN,DT,INTDF(500), INTSP(500),
RMU(10),DISPN(500),DISPT(500), TNRATIO(500),
XRHO(500),SIGNN(S500), TAUNT(S00),FN(500),FT(500)
COMMON/MODPARA/RMP1( 10),RMP2(10) ,RMP3( 10) ,RMP4(10) .RMPS( 10),
1 RMP6(10) ,RMP7(10) ,RMP8( 10) ,RMPS(10),RMP10( 10)
COMMON/VPLAS1/DTIME,DEVPAL
COMMON/DISPHIS/DELTAQ(2400), WORKN(S00) , WORKT(500), FSEPN(500),
1 FSEPT(500)
COMMON/IPRISIG/ISELSIG,NUMSELSIG,MSELSIG(100)
C INPUT DATA AND PRINT
DTIME=1.0
CALL INPUT(FGL,NSTE)
CALL BANWD(2,NEL,NODE,2,MAXBW, 1)
C INITIALIZE DISPLACEMENTS
NTOT=2*NN
DO 100 I=1,NTOT
100 Q(I)=0.
C INITIALIZE STRESS, STRAIN, AND INTERFACE TRACTIONS
DO 44 I=1,NEL
S(I,4)=0.
EPSP(I,4)=0.
1

WA -

44 CONTINU
DO 5500 1
XRHO(I) =
WORKN( 1)
WORKT(1)
FSEPN(I)
FSEPT(I1)
FN(I) = 0.0
FT(1) = 0.0

5500 CONTINUE
C SET GLOBAL FORCE MATRIX EQUAL TO A TEMPORARY VALUE USED TO

Qo
QO =

nononon
[eNeNeNeo
[eNeNeNe)



c EVALUATE THE INCREMENTAL LOADS.........
DO 50 I=1,NTQOT
50 FORCE(I)=FGL(I)
IF(IDUMP.NE.1) GO TO 85
WRITE(6,4400)
4400 FORMAT(/,10X,’STEP NO.’,5X, ‘TIME’,5X,
1/SIG11AV”’ ,5X, ‘EPS11AV‘,//)
85 CONTINUE
C THIS LOOP INCREMENTS THE LOAD
TIME=0.
EBAR11=0.
DO 9999 INCR=1,NSTE
EBAR11=EBAR1 {+DEBAR 11
TIME=TIME+DTIME
C DETERMINE GLOBAL LINEAR STIFFNESS MATRIX
DO 39 I=1,NEL
DST(I,4)=0.
DS(I,4)=0.
DEPSPT(1,4)=0.
DEPSP(1,4)=0.
DO 39 K=1,3
DST(I,K)=0.
DS(I,K)=0.
DEPSPT(I,K)=0.
DEPSP(I,K)=0.
38 DET(I,K)=0.
CALL KGLOB(KG,NODE,NTOT,NDOF)
ITER=1
C PERFORM NEWTON-RAPHSON ITERATION ON EACH LOAD INCREMENT IF
C SOLUTION IS NONLINEAR
c INCREMENT THE LOADS HERE
IF(NF.EQ.O0) GD TO 240
DO 239 I=1,NF
K=ICURVE(I)
L=INCR
NN1=2*INODE(I)-1
NN2=NN1+1{
FGL(NN1)=FORCE(NN1)*RV(K,L)
FGL(NN2)=FORCE(NN2)*RV(K,L)
2338 CONTINUE
240 CONTINUE

cX
IF ( NDBC .EQ. O ) GO TO 243
DO 242 I = 1, NDBC
cX
cX K = ICURVE(I)
(o
K = 1
L = INCR
DPMINC(I) = DINC(I) * DMULT(K,L)
cXx WRITE(6, 1234) L,I,DPMINC(I)
CX 1234 FORMAT(/,’ INCR = ‘,I5,5X,’NUMDBC = ’,I5,5X, DPMINC(I) =,
cX + F14.5,/)

242 CONTINUE
243 CONTINUE
(op'¢
9000 CONTINUE
DO 8010 J=1,NTOT
FG(J)=0.0
9010 CONTINUE
IF(IDUMP.LT.2) GO TO 3004
cX
WRITE(6,3010) INCR
3010 FORMAT(//,10X, 'LOAD INCREMENT NUMBER ’,I6,//)
cx
WRITE(6,3002) ITER
3002 FORMAT(25X,‘ITERATION NUMBER’,I16,//)
3004 CONTINUE
C DETERMINE GLOBAL FORCE MATRIX
CALL FGLOB(FGL,FG,NTOT,S)
C DETERMINE GLOBAL STIFFNESS MATRIX IF UPDATING
IFLAG=1
IF(ITER.EQ.1) GO TO 99
ISQUIG=(ITER-1)/ISREF*ISREF
IF(ISQUIG.NE.ITER-1) GO TO 98
CALL KGLOB(KG,NODE,NTOT.NDOF)
98 CONTINUE
IF(ITER.LT.ITEMAX) GO TO 99
WRITE(6,3003)
3003 FORMAT(‘ ,3X,’SOLUTION HAS NOT CONVERGED’,/)



STOP
C SOLVE FOR DISPLACEMENT INCREMENTS USING GAUSS ELIMINATION
99 CONTINUE
CALL BANSOL(KG,FG,NTOT,MAXBW,2400,600,3)
DO 87 I=1,NTOT
87 DELTAQ(I)=FG(I)
C CHECK DISPLACEMENT INCREMENTS FOR CONVERGENCE
VvOLD=0.
VNEW=0.
DO 88 I=1,NTOT
VOLD=VOLD+DELTAQ(I)**2
Q(I)=Q(I)+DELTAQ(I)
88 VNEW=VNEW+Q(I)**2
VOLD=(VOLD)**0.5
VNEW=(VNEW)**0.5
C CALCULATE STRESSES AND STRAINS
CALL STRESS(NODE,DS,DE,DELTAQ)
FRAC=VOLD/VNEW
IF(FRAC.LT.Q.) FRAC=-FRAC
IF(FRAC.LT.RTOL) GO TO 887
ITER=ITER+1
IF(IDUMP.LT.2) GO TQ 777
WRITE(6,6001)
6001 FORMAT(/,10X,’THE ESTIMATED DISPLACEMENTS ARE’,/,5X,
1/NODE NO.’,13X, A1’ ,13X,’A2',/)
DO 739 I=1,NN

I2M1=2*I-1
12=2%*1
739 WRITE(6,1004) I,Q(I2M1),Q(12)
ISIGP=1
cX IF(ISIGP.NE.1) GO TO 777
(o'¢ WRITE(6,740)
CX 740 FORMAT(’ ’,3X,’THE ESTIMATED STRESSES ARE‘,//,
cX 12X, ELEMENT NO.‘,6X,’SIG-XX‘,6X, ’SIG-YY"’,
cx 26X, 'SIG-XY’,6X, ‘S1G-22',//)
(o4 DO 741 I=1,NEL
CcX WRITE(6,742) I1,S(1,1),s(1,2),5(1,3),5(1,4)

CX 742 FORMAT(‘ ’,8X,13,4(1X,E14.7),/)
CX 741 CONTINUE
777 CONTINUE

GO TO 9000
887 CONTINUE
(03 4
(03 4 DO 772 I=1,NIFEM
cY WRITE(6,771) INCR,I, XRHO(I)
CY 771 FORMAT(5X,’INCR= ‘,I5,5X, INTF. ELEM. NUM.: ’,IS5,5X, XRHO= ‘,E14.7)
CY 772 CONTINUE
(03 4
Cy
CcX

C STORE DATA FOR FORCE-DISPLACEMENT PLOT
C STRESSES FROM SELECTED ELEMENTS ARE RECORDED
C FOR LATER CONVERSION TO TRACTION FORCES
(o4
IF ( ISELSIG .EQ. O ) GO TO 888
cX
IF ( INCR .EQ. 1 ) THEN
WRITE(8,8000)
8000 FORMAT(/,5X, ‘LOAD STEP’,2X, ‘ELEM’,7X, 'SXX’, 10X, ’SYY’, 10X, ‘SXY’,

1 10X, S22’,/)
ENDIF
SSUM1 = 0.0
SSUM2 = 0.0
SSUM3 = 0.0
SSUM4 = 0.0
DO 8005 IJ = 1, NUMSELSIG
IENUM = MSELSIG(IJ)
SSUM1 = SSUM1 + S(IENUM, 1)
SSUM2 = SSUM2 + S(IENUM,2)
SSUM3 = SSUM3 + S(IENUM,3)
SSUM4 = SSUM4 + S(IENUM,4)
cY WRITE(8,8001) INCR, IENUM, S(IENUM,i), S(IENUM,2), S(IENUM,3),
cy 1 S(IENUM,4)
CY 8001 FORMAT(SX,15,5X,15,5X,4(2X,E12.5))

8005 CONTINUE
WRITE(8,8011) INCR, SSUM{, SSUM2, SSUM3, SSUM4
8011 FORMAT(10X,I5, 10X,4(2X,E12.5))
CX
888 CONTINUE
CX
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CcX

Routine to store damaged interface data

open and initialize data file "intf.out"

0000

IF ( INCR .EQ. 1 ) THEN
OPEN (7,FILE=‘kintf.out’,STATUS=’UNKNOWN’ )
WRITE(7,537) INCR
537 FORMAT(/,5X, *INCREMENT NUMBER ’,15,/)
DO 540 I = 1, NIFGP
DO 540 J = ITGPL(I,1), ITGPL(I,2)

IA =0
IB = 0O
LN = O
SPN = 0.0
SPT = 0.0
TNRAT = 0.0
WRITE(7,535) I, J, LN, IA, IB, SPN, SPT, TNRAT
540 CONTINUE
REWIND 7
ELSE
REWIND 7
ENDIF
C
C check for failure and assign damage flags and load step
C
c INTDF(I) = 1, tensile failure
C INTDF(I) = 2, shear failure
C
WRITE(7,537) INCR
DO 530 J = 1, NIFGP
CX
C ASSIGN VARIABLES FOR KACHANOV’S MODEL
[

EO = SIGMAX(J)
RNU = DELTAN(J)
GO = DELTAT(J)
ESPCRIT = ALPH(J)
RLAMBDA = ETA(J)
RL = DBFAC(J)
RBETA = RMU(J)
c CHANGE EO AND RNU TO PLANE STRAIN CONDITIONS
EO = EO / ( 1.0 - (RNU**2) )
RNU = RNU / ( 1.0 - RNU )

cX
LN = 0
DO 530 I = ITGPL(J,1), ITGPL(J,2)
LN = LN + 1
cx DISPN = 0.0
cx DISPT = 0.0
cX TNRATIO = 0.0
cX IF ( DN(I)/DELTAN(J) .LE. 1 ) GO TO 531
cx IF ( INTDF(I) .EQ. O ) THEN
(09'¢ INTDF(I) = 1
cx INTSP(I) = INCR
CX DISPN = DN(I)
cX DISPT = DT(1)
cX TNRATIO = DT(I) / DN(I)
cX ENDIF
CX 531 CONTINUE
cx IF ( ALPH(J) .LT. 0.001 ) GO TO 532
()4 IF ( DABS(DT(I))/DELTAT(J) .LE. 1 ) GO TO 532
cX IF ( INTDF(I) .EQ. O ) THEN
cx INTDF(I) = 2
cx INTSP(I) = INCR
cX DISPN = DN(I)
cX DISPT = DT(1)
cX TNRATIO = DT(I) / DN(I)
CcX ENDIF
CX 532 CONT INUE

RLSQ = ( (DN(I)/RL) / 2.0 )**2 + ( (DT(I)/RL) /2.0 )*=2
RLAM = SQRT( RLSQ )
UM1 = (DN(I)/RL) / 2.0 + RLAM
UM2 = (DN(I)/RL) / 2.0 - RLAM
UMAX = DMAX1( UM1 , UM2 )
IF ( UMAX .GT. ESPCRIT ) THEN
IF ( INTDF(I) .NE. 3 ) THEN
INTDF(1) = 3
I

INTSP(I) = INCR



DISPN(I)
DISPT(I)
TNRATIO(I) = DT(I) / DN(I)

TNRATIO(I) = ABS( TNRATIO(I) )

nou
o
puur]
—~
—
~—

ENDIF
ENDIF
C
C STORE DATA: GROUP NUM., ELEMENT NUM., DAMAGE FLAG, FAILURE STEP
C
WRITE(7,535) J, I, LN, INTDF(I), INTSP(I),
1 DISPN(I), DISPT(I), TNRATIO(I)
535 FORMAT(S(2X,15),3(2X,E14.7))
C

530 CONTINUE
CX
(£).2,0.09.0.009.9000999 0999000900060 0600¢698960690800900060000000900904800008000000008¢
CX
(929.0.00.¢.000 099900909009 060006003080¢0909000000000000000000000000080000e000000
cX
Routine to store work of separation data

open and initialize data file "kwork.out"

noo0ooo

IF ( INCR .EQ. 1 ) THEN
OPEN (9,FILE='kwork.out’, STATUS='UNKNOWN")
WRITE(9,9537) INCR
9537 FORMAT(/,5X,  INCREMENT NUMBER ‘,IS5,/)
DO 8540 I = 1, NIFGP
DO 9540 J = ITGPL(I, 1), ITGPL(I,2)

IA = O
IB = O
WOSN = 0.0
WOST = 0.0
WOSTOT = 0.0
WRITE(9,9535) I, J, WOSN, WOST, wOoSsSTOT
9540 CONTINUE
REWIND S
ELSE
REWIND S
ENDIF
C

WRITE(9,9537) INCR
DO 9530 J = 1, NIFGP

CX
DO 9530 I = ITGPL(J,1), ITGPL(J,2)
C
C STORE DATA: GROUP NUM., ELEMENT NUM., WORK OF SEPARATION
C
WOSTOT = WORKN(I) + WORKT(I)
WRITE(9,9535) J, I, WORKN(I), WORKT(I),
1 WOSTOT
9535 FORMAT(2(2X,15),3(2X,E14.7))
c
9530 CONTINUE
cX

[92.0.2,0,0.0.0 099900099 90808009¢0800009900809008¢9000000900¢0 0000000000 00PPPOLOPEEOYS
CXx
CX IF(IDUMP.EQ.1) GD TO 84
IF(INCR/IPRI*IPRI.NE.INCR) GO TO 9999
WRITE(6,3001) INCR,ITER
3001 FORMAT(//,5X,'EQUILIBRIUM FOR LOAD STEP NUMBER ,1I6,
1/ OBTAINED AFTER ’,I6,’ ITERATIONS’,//)

CX
CX temporarily disabled
CX
cX WRITE(6, 1032) SIG1AV,EBAR11

CX 1032 FORMAT(//,10X,’SIG1AV=',E14.7,1X, 'EBAR1I1 = ' E14.7,/)
WRITE(6, 1003)
1003 FORMAT(/, 10X, ’THE DISPLACEMENTS ARE‘,/,S5X, ’NODE NO.‘, 13X,
1/A17,13X,’A2°,/)
DO 93 I=1{,NN
93 WRITE(6,1004) I,Q(2*I-1),Q(2*1)
1004 FORMAT(10X,13,2(1X,E14.7))

X WRITE(6, 1011)

CX 1011 FORMAT(//,2X,’ELE. NO.’,3X,’SIGMA11‘,3X,  EPSILON11‘,3X,
CcX 1/SIGMA22,3X, 'EPSILON22’ ,3X, ‘SIGMA12’ ,3X, ‘EPSILON12’, 3X,
cX 2/SIGMA33/,//)

cX DO 1012 I=1,NEL

CcX WRITE(6,1013)I,5(I,1),E(I,1),S(1,2),€E(1,2),S(1,3),E(1,3).

CcX 15(1,4)



CX 1012 CONTINUE
CX 1013 FORMAT(’ ’,5X,I13,7(E14.7,1X))

cX IF(IDUMP.NE.O) GO TO 1041

CcX WRITE(6,4011)

CX 4011 FORMAT(//,2X,’ELEMENT NO.’,3X, 10X, ‘EPSP11’,

CX 110X, 'EPSP22’ , 10X, EPSP12’, 10X, 'EPSP33"',//)

cX DO 4012 I=1,NEL

CcX WRITE(G.4013)I.EPSP(I.1),EPSP(I.2).EPSP(I.3).EPSP(I,4)

CX 4013 FORMAT(’ ’,6X,13,7X,4(E13.6,2X))
CX 4012 CONTINUE
CX 1041 CONTINUE

cX
CX end here
IF(IINT.EQ.O) GO TO 9999
cX
cX WRITE(G,4500)
CX 4500 FORMAT(/,10X,’ THE INTERFACE DISPLACEMENTS ARE’,/,
cX 15X, "NORMAL COMP.‘ ,S5X, ‘TANGENTIAL COMP.’,/)
(¢ NUM=NINT2-NINT 1+1
CcX DO 229 I=1,NUM
cX WRITE(6,4501) DN(I),DT(I)

CX 4501 FORMAT(S5X,£15.7,1X,E15.7)
CX 229 CONTINUE

CX LLL=NINTH1

CcX DO 230 I=1,NUM

CX IF(DN(I)/DELTA.LE.1.) GO TO 231

CX WRITE(6,4502) INCR,LLL

CX 4502 FORMAT(/,5X,‘STEP NO. ‘,IS, 1X,

CX 1/NODE NO.‘,I3,‘ DEBONDED IN TENSION’,/)
CX 231 CONTINUE

CcX IF(ALPH.LT..001) GO TO 232

CX IF(DABS(DT(1))/DELTA.LE.1) GO TO 232
CX WRITE(6,4503) LLL,INCR

CX 4503 FORMAT(/,5X,’STEP NO. ‘,I5,1X,

CX 1/NODE NO.‘,I3,‘ DEBONDED IN SHEAR’,/)
CX 232 CONTINUE

CX LLL=LLL+1

CX 230 CONTINUE

CX

DO 229 J = 1, NIFGP
WRITE(6,5000) J

5000 FORMAT(//,’ INTERFACE ELEMENT GROUP NO. ‘,I5,//)
WRITE(6,5050)
5050 FORMAT (10X, THE INTERFACE DISPLACEMENTS ARE:’,/,
1 5X, INTRF. ELEM. NO.’,5X,  NORMAL COMP.‘, 5X,
2 ‘TANGENTIAL COMP.~,/)

D0 229 I = ITGPL(J,1), ITGPL(J,2)
WRITE(6,5100) I, DN(I), DT(I)
5100 FORMAT (15X, 15, 10X,£15.4,5X,E15.4)
229 CONTINUE
DO 230 J = 1, NIFGP
WRITE(6,5000) J
DO 230 I = ITGPL(J,1). ITGPL(J,2)
IF ( DN(I)/DELTAN(J) .LE. 1 ) GO TO 231
WRITE(6,4502) INCR, I

4502 FORMAT(/,5X, STEP NO. ’,I5,1X,
1 “NODE NO.‘,16,’ DEBONDED IN TENSION’,/)
231 CONTINUE

IF ( ALPH(U) .LT. 0.001f ) GO TO 232
IF ( DABS(DT(I))/DELTAT(JU) .LE. 1 ) GO TO 232
WRITE(6,4503) INCR, I

4503 FORMAT(/,5X,’STEP NO. ’,I6, 1X,
1 ‘NODE NO.‘,16,’ DEBONDED IN SHEAR’,/)
232 CONTINUE
230 CONTINUE
CX
GO TO 9998

84 CONTINUE

WRITE(6,4404) INCR,TIME,SIG1AV,EBAR11
4404 FORMAT(10X,IS5,F10.7,1X,E14.7,1X . E14.7)
9999 CONTINUE

CLOSE(5)

CLOSE(6)

CLOSE(7)

CLOSE(8)

CLOSE(9)

CLOSE(19)

sToP

END
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c
c SUBROGUTINE INPUT
c
c THIS SUBROUTINE READS IN AND PRINTS INPUT DATA
c
C**t**ttt**********t***********#**t***t##t*tt*t**tttt****************t
c
SUBROUTINE INPUT(FGL,NSTE)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 A1(1200),A2(1200),FGL(2400),T(1500),0N(500),DT(500)
INTEGER NODE(1500,3),NDOF(1500) ,MATSET(1500) ,MTYPE( 1500)
CHARACTER*7S TITLE, INFILE, OUTFILE
COMMON/CHIST/RTOL ,NN,NEL ,NF ,NDBC, IDUMP, IPRI , ISREF,
1 IEQUIT,ITEMAX,ITEMP, IINT
COMMON/ELAS1/S(1500,4),E(1500,3),E0(1500,3),DSTRAN(3),
1 DSTRES(4)
COMMON/ELAS2/EM1(4),EM2(4),VNU(4),G12(4).Y1(4),Y2(4),Y(4),
1 EM(4)
COMMON/PLAS1/ALPHA(4, 1500) ,EPBAR( 1500),SIGBAR( 1500),
1 IPLAS(1500) ,EPSP(1500,4) ,DEPSPT(1500,4),
2 DEPSP(1500,4)
COMMON/PLAS2/SX(10,4),EX(10,4),EPX(10,4),
1 SP(10,4) ,DEPSAL,BETA
COMMON/VPLAS 1/DTIME ,DEVPAL
COMMON/VPLAS2/RN,H1,H2,AA1,AA2,C2,D0,B1, TEMP, TMELT, QS
COMMON/AREA2/NODE , NDOF
COMMON/AREAS/T,MATSET,MTYPE
COMMON/AREAG/A1,A2
COMMON/BB/NUNIAX(4), IDUMP2, ISUB
COMMON/LOAD/TIMV( 1, 1000),RV(1, 1000), INODE ( 100), ICURVE(100),
1 DINC(1000) ,DPMINC( 1000) ,DMULT (1, 1000)
cX COMMON/INTFAC/NINT1,NINT2,SIGMAX ,DELTA,ALPH,DBFAC,DN,DT,ETA

COMMON/ INTFAC/NIFEM,NIFGP,ITGPL(10,2),ITCON(500,2).
SIGMAX(10),DELTAN(10) ,DELTAT(10),ALPH(10),
ETA(10),DBFAC(10),DN,DT, INTDF(500), INTSP(500)
+RMU(10) ,DISPN(500),DISPT(500),TNRATIO(500),
XRHO(500), SIGNN(500), TAUNT (500), FN(500) ,FT(500)

COMMON/MODPARA/RMP1(10) ,RMP2( 10) ,RMP3(10) ,RMP4( 10) ,RMPS(10),

1 RMP6(10) ,RMP7(10),RMP8(10) ,RMPS(10) ,RMP10( 10)

COMMON/HOMOG/SIG1AV,DEBAR11

COMMON/IPRISIG/ISELSIG,NUMSELSIG,MSELSIG( 100)

H WK =

READ INPUT DATA
NN - NUMBER OF NODES
NEL - NUMBER OF ELEMENTS
NF - NUMBER OF NODES WITH EXTERNALLY APPLIED LOADS
NDBC - NUMBER OF DISPLACEMENT BOUNDARY CONDITIONS
DINC - DISPLACEMENT INCREMENTS
IDUMP - DUMPING CODE (1 TO DUMP)
ITEMP - TEMPERATURE EFFECTS FLAG (1 FOR TEMPERATURE EFFECTS)
RTOL - TOLERANCE USED TO MEASURE EQUILIBRIUM CONVERGENCE
IPRI - QUTPUT PRINTING INTERVAL
ISREF - NUMBER OF ITERATIONS BETWEEN REFORMATION OF STIFFNESS
MATRIX
IEQUIT - NUMBER OF STEPS BETWEEN EQUILIBRIUM ITERATIONS (NOT USED)
ITEMAX - MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS PERMITTED
BEFORE REFORMATION OF STIFFNESS MATRIX
IINT - EQ. ZERO UNLESS USING INTERFACE ELEMENTS
A1 - GLOBAL A1 COORDINATE OF ITH NODE
A2 ~ GLOBAL A2 COORDINATE OF ITH NODE
IEL - ELEMENT NUMBER ASSOCIATED WITH CONNECTIVITY MATRIX
NODE - NODAL CONNECTIVITY PARAMETER - GIVES GLOBAL NODE NO’S OF
ITH ELEMENT
MATSET - MATERIAL NUMBER FOR ITH ELEMENT
MTYPE - MATERIAL MODEL FOR ITH ELEMENT
-1 ISOTROPIC LINEAR ELASTIC

- 2 = ELASTIC PLASTIC
- 3 = VISCOPLASTIC
- 4 = VISCOELASTIC

T - THICKNESS OF ITH ELEMENT

NDOF - DEGREE OF FREEDOM OF ITH BOUNDARY CONDITION
INODE - NODE OF ITH FORCE VECTOR

FA1 - EXTERNAL LOAD IN A1 DIRECTION APPLIED TO ITH NODE
FA2 - EXTERNAL LOAD IN A2 DIRECTION APPLIED TO ITH NODE
NUNIAX - NUMBER OF UNIAXIAL STRESS-STRAIN POINTS

ISUB - SUBINCREMENTATION FLAG(.NE.O) NO SUBINCS

IDUMP2 - DUMPING CODE(EQ.0) NO PRINTS

EM - YOUNG’S MODULUS

VNU - POISSON’S RATIO

[sEeNoNsReNsNeRoNoNoNsNsNoNoRoNoNoNoNoNo N NoNoNs NoNeRoNo NoNo No NoNo No No N o Ne N e]



Y - UNIAXIAL YIELD POINT

BETA - HARDING RATIO

DEPSAL - ALLOWABLE STRAIN SUBINCREMENT

SX(J) - VALUE OF STRESS ON SIGMA-X VS EPSILON-X CURVE
EX(J) - VALUE OF STRAIN ON SIGMA-X VS EPSILON-X CURVE
FGL - GLOBAL FORCE MATRIX

NLCUR - NUMBER OF LOAD CURVES

TIMV - TIME VALUE OF LOAD MULTIPLIER

RV - LOAD MULTIPLIER

ICURVE - LOAD CURVE NUMBER

FORCE - SET EQUAL TO INITIAL UNIT GLOBAL FORCE MATRIX

[oNeNsNesNoNoNesNeNeRe Ne Ny

OPEN(19,FILE='kdata.dat’ ,READONLY,STATUS='0LD’)
READ(19,107) INFILE
107 FORMAT(A)
OPEN(5,FILE=INFILE,STATUS=/0LD’)
READ( 19, 107) OUTFILE
OPEN(6,FILE=0UTFILE,STATUS="UNKNOWN" )
OPEN(8,FILE="kfordist.out’,STATUS="UNKNOWN’)
WRITE(6G,4956)
WRITE(8,4956)
4956 FORMAT(//,5X, DANCOM: MODIFIED KACHANOV MODEL‘,/)
READ(5,5002) TITLE
5002 FORMAT(A7S)
WRITE(6,5001) TITLE
WRITE(8,5001) TITLE
5001 FORMAT(//,A75//)
READ(S,*) NN,NEL,NF,NDBC, IDUMP, ITEMP ,NLCUR,NSTE,
1 IINT
cX READ(S,1001) NN,NEL,NF,NDBC, IDUMP, ITEMP ,NLCUR,NSTE
cX 1IINT
CX 1001 FORMAT(915)
READ(5,*) RTOL,IPRI,ISREF,IEQUIT, ITEMAX,NOMAT
cX READ(5, 1002) RTOL,IPRI,ISREF,IEQUIT,ITEMAX,NOMAT
CX 1002 FORMAT(F10.6,5I5)
37 WRITE(6,2001) NN,NEL,NF,NDBC,NSTE,NOMAT
2001 FORMAT(SX, ‘THE INPUT DATA ARE AS FOLLOWS’,//.10X,
‘NUMBER OF NODES = ’,16,/,10X, ‘NUMBER OF ELEMENTS
16,/,10X, ‘NUMBER OF EXTERNAL FORCE COMPONENTS = -/,
13,/.10X, '"NUMBER OF DISP. BOUNDARY CONDITIONS = -,
10X, ‘NUMBER OF SOLUTION STEPS = ’,lI6,/,
10X, ‘NUMBER OF MATERIAL MODELS USED = ‘,I13,//)
WRITE(6,2002) RTOL,IPRI,IDUMP,ISREF,IEQUIT,ITEMAX
2002 FORMAT(SX, ‘THE SOLUTION IS NONLINEAR’,//,10X,

OB WN

‘OUTPUT PRINTING INTERVAL = ‘,I6,/, 10X,
OUTPUT FORMAT OPTION = /,13,/, 10X,
'NO. OF ITER. BEFORE REFORMING STIFFNESS MATRIX
13,/,10X%,
‘NUMBER OF STEPS BETWEEN EQUILIBRIUM ITERATIONS
13,/,10X%,
‘MAX NO. ITERATIONS BEFORE REFORMATION OF K MATRIX
13,//)
READ(5,*) (A1(I),A2(I),I=1,NN)
CcX READ(5,1003) (A1(I),A2(I),I=1,NN)
CX 1003 FORMAT(2F10.7)
WRITE(6,2003)
2003 FORMAT(//, 10X, ‘NODAL COORDINATES ARE’,//.10X,
1 ‘NODE NO.‘ 18X, A1’,18X,’A2/,//)
DO 17 II=1,NN
17 WRITE(6,2004) II,A1(II),A2(11)
2004 FORMAT(10X,I13,15X,F10.4,10X,F10.4)
DO 100 I=1,NEL
100 READ(S,*) IEL,(NODE(IEL,J),JU=1,3) MATSET(IEL),
1 MTYPE(IEL)
CX 100 READ(S5, 1004) IEL,(NODE(IEL,J),J=1,3),MATSET(IEL),
cX 1MTYPE(IEL)
CX 1004 FORMAT(6I5)
WRITE(6,2005)
2005 FORMAT(//,10X, ‘GLOBAL NUMBERING OF ELEMENTS IS-,
1 //,4X, ELEMENT NO.‘,4X, ‘NODE 1’,4X,’NODE 2',
2 4X, “NOBE 3’,4X, 'MATSET’,5X, ‘MTYPE’,//)
DO 101 I=1,NEL
101 WRITE(6,2006) I,(NODE(I,J),J=1,3),MATSET(I),MTYPE(I)
2006 FORMAT(5X,I5,2X,5(5X,15))
DO 20 I=1,NEL
20 T(1)=1.0
22 CONTINUE
READ(5,*) (NDOF(I),I=1,NDBC)
CcX READ(S, 1005) (NDOF(I),I=1,NDBC)

OCONAU EWN

= 7

13./,

‘TOLERANCE FOR EQUILIBRIUM CONVERGENCE IS = ‘/,F10.6,/, 10X,



CX 1005 FORMAT(12I5)
WRITE(6,2023)
2023 FORMAT(//.10X,
1 ‘THE DISP. BOUNDARY CONDITIONS ARE APPLIED AT’,/,
2 10X, ‘DEGREES OF FREEDOM‘,//)
WRITE(6,2024)(NDOF(1),I=1,NDBC)
2024 FORMAT( 10X, 1015)
READ(5,*) DEBARt1
cX READ(S,7004) DEBAR11
CX 7004 FORMAT(F10.6)
WRITE(6,7003) DEBAR11
7003 FORMAT(/,10X, 'DEBAR11 = ‘,F10.6,/)
READ(S,*) (DINC(J),JU=1,NDBC)
CcX READ(5,7005) (DINC(J),dJ=1,NDBC)
CX 7005 FORMAT(6F10.4)
WRITE(6,7006)
7006 FORMAT( 10X, ’THE DISPLACEMENT INCREMENTS ARE‘,//)
WRITE(E,7007) (DINC(J),J=1,NDBC)
7007 FORMAT(5(2X,F10.8) )

NTOT=2*NN
C
C ZERO GLOBAL FORCE MATRIX
C

DO 102 1=1,NTOT
102 FGL(I)=0.

CX
CcX IF(NF.EQ.O) GO TO 504
CX
IF ( NF .EQ. O ) GO TO 6666
CX

WRITE(6,2007)
2007 FORMAT(//,5X, FORCES ARE APPLIED AS FOLLOWS’,//,5X,
i ‘NODE NO.‘,2X,‘LOAD CURVE NO.’,5X,’A1 FORCE’,SX,
2 A2 FORCE’,//)
DO 103 I=1,NF
READ(5,*) INODE(I),ICURVE(I),FA1,FA2
cX READ(5, 1006} INODE(I),ICURVE(I),FA1,FA2
CX 1006 FORMAT(215,2F10.0)
WRITE(6,2008) INODE(I),ICURVE(I),FA1,FA2
2008 FORMAT(5X,13,10X,13,2(5X,F10.0))
c
C ASSEMBLE GLOBAL LINEAR FORCE MATRIX
c
NN1=2*INODE(I)-1
NN2=NN1+1
FGL(NN1)=FGL(NN1)+FA1
103 FGL(NN2)=FGL(NN2)+FA2
IF(IDUMP.LT.3) GO TO 6666
WRITE(6,2014)
2014 FORMAT(//,20X,’GLOBAL LINEAR FORCE MATRIX’,//)
WRITE(6,2015) (FGL(I),I=1,NTOT)
2015 FORMAT(30X,E15.7)
6666 CONTINUE

Cc
Cc LOAD CURVE MULTIPLIERS
C
DO 109 K=1,NLCUR
DO 110 L=1,NSTE
CX
READ(S,*) TIMV(K,L),RV(K,L),DMULT(K,L)
CX
C
CX READ(5,111) TIMV(K,L),RV(K,L)

CX 111 FORMAT(2F10.2)
110 CONTINUE
109 CONTINUE
WRITE(6,112)
112 FORMAT(’ ’,//.10X, LOAD CURVE AND DISPLACEMENT MULTIPLIERS,///)
DO 113 K=1,NLCUR
WRITE(6,114)K

CX
114 FORMAT(’ ’,5X,’LOAD CURVE NO. -,
1 2X,13,//,10X, "TIMV’, 13X, 'RV’ , 13X, ‘DMULT’,/)
CX
DO 115 L=1,NSTE
CX

WRITE(G,116) TIMV(K,L),RV(K,L),DMULT(K,L)
116 FORMAT(‘ *,3X,F10.4,8X,F10.4,8X,F10.4)
CX
115 CONTINUE



113 CONTINUE
504 CONTINUE
c
C READ IN MATERIAL PROPERTIES
c
READ(5, *) MODNUM1,MODNUM2 , MODNUM3 , MODNUM4
CcX READ(S,2507) MODNUM1,MODNUM2 , MODNUM3 , MODNUM4
CX 2507 FORMAT(415)
IF(MODNUM1 .EQ.Q) GO TO 4S5+
c
C READ IN MATERIAL PROPERTIES FOR ELASTIC ELEMENTS
c
WRITE(6,6707) MODNUM1
6707 FORMAT(/,5X,’THERE ARE ’,I3,’ ELASTIC MATERIAL SETS’,
1 /.*SET NO.‘,6X,’E1/,13X, E2’,13X, ‘NU12‘,
2 13X, ‘G127 ,10X, "Y1’ ,14X, ‘Y2’ /)
DO 559 I=1,MODNUMI
READ(5,*) MATNO,EM1(MATNO),EM2(MATNO),VNU(MATNO),
1 G12(MATNO),Y1(MATND),Y2(MATNO)
cX READ(5,6700) MATNO,EM(MATNO),VNU(MATNO),Y(MATNO)
CX 6700 FORMAT(4X,I15,3E15.7)
WRITE(6,6702) MATNO,EM1(MATNO),EM2(MATND),VNU(MATNG),
i G12(MATNO),Y1(MATNO),Y2(MATND)
6702 FORMAT(2X,I13,3X,6(1X,E14.7))
559 CONTINUE
451 CONTINUE
IF(MODNUM2 .EQ.0) GO TO 452
c
C READ IN MATERIAL PROPERTIES FOR ELASTIC-PLASTIC ELEMENTS
c
WRITE(6,6701) MODNUM2
6701 FORMAT(/,5X,’'THERE ARE ’,13,
1 ‘ ELASTIC~PLASTIC MATERIAL SETS’,/)
READ(5,*) ISUB, IDUMP2,BETA,DEPSAL
CX READ(5,2050) ISUB, IDUMP2,BETA,DEPSAL
CX 2050 FORMAT(2I5,F10.0,F10.2)
WRITE(6,2060) ISUB,IDUMP2,BETA,DEPSAL
2060 FORMAT{ 10X, SUBINCREMENTATION FLAG = /,IS5,/,

i 10X, ‘DUMPING CODE = ‘,15,/,10X, ‘BETA = *,
2 F10.4,/,10X, ‘ALLOWABLE STRAIN SUBINCREMENT =
3 F10.5,//)

DO 363 I=1,MDDNUM2
READ(S,*) MATNO,NUNIAX(MATNO),EM(MATNO),

1 VNU(MATNO) ,Y(MATNO)
cX READ(5,2390) MATNO,NUNIAX(MATNO),EM(MATNO),
CX 1VNU(MATNO), Y(MATNG)

CX 2380 FORMAT(215,F10.0,F10.4,F10.0)
READ(5,2070) (SX(J,MATNO),EX(J,MATNO),J=1,NUNIAX(MATNO))
2070 FORMAT(6F10.0)
WRITE(6,2040) MATNO
2040 FORMAT( 10X, 'MATERIAL SET NUMBER = ,IS,/)
WRITE(6,2043) EM(MATNO),VNU(MATNO),Y(MATNO)
2043 FORMAT (10X, "MODULUS OF ELASTICITY = ‘,E14.7./,
1 10X, "POISSONS RATIO = ,Et14.7./,
2 10X, ‘YEILD POINT = ‘ ,E14.7,/)
WRITE(6,2080)
2080 FORMAT(10X,’THE INPUT UNIAXIAL STRESS-STRAIN DATA ARE’,/,
i 14X, “STRESS’, 14X, ‘STRAIN’,//)
DO 10 J=1,NUNIAX(MATNO)
WRITE(6,2090) SX(J,MATNO),EX(J,MATNO)
2090 FORMAT(10X,F10.2,10X,F10.5)
10 CONTINUE
WRITE(6, 3000)
3000 FORMAT(//,10X,’THE UNIAXIAL K VS EPBAR DATA ARE’,//,
1 19X, ‘K’ , 15X, “EPBAR’,//)
DO 11 J=1,NUNIAX(MATNO)
EPX(J,MATNO)=EX(J,MATNO)-SX(J,MATNO)/EM(MATNO)
SP(J,MATNO) =Y (MATNG )+ (SX(J,MATNO)-Y(MATNO) ) *BETA
WRITE(6,2090) SP(J,MATNO),EPX(J,MATNO)
11 CONTINUE
363 CONTINUE
DO 1007 J=1,NEL
IF(MTYPE(J).NE.2) GO TO 1040
EPBAR(J)=0.0
IPLAS(U)=0
SIGBAR(J)=Y(MATSET(J))
DO 1008 1=1.4
ALPHA(I,J)=0.0
1008 CONTINUE
1040 CONTINUE



1007 CONTINUE

452

2200

2201

CX

IF(MODNUM3.EQ.0) GO TO 453
WRITE(6,2200) MODNUM3

FORMAT(/,.SX, 'THERE IS /,I3,’ VISCOPLASTICITY MODEL‘,/)

DO 222 I=1,MODNUM3
WRITE(6,2201) 1
FORMAT (10X, 'VISCOPLASTICITY MODEL NO. “,I2)
READ(5,*) DTIME,DEVPAL
READ(5,2100) DTIME ,DEVPAL

CX 2100 FORMAT(2E15.7)

WRITE(6,2101) DTIME,DEVPAL

2101 FORMAT(10X,‘TIME STEP = ‘ ,E14.7,/,

CX

1

10X, "ALLOWABLE STRAIN SUBINCREMENT =

WRITE(6,2040) MATND
WRITE(6,2043) EM(MATNO),VNU(MATNO),Y(MATNO)

‘' E14.7,/)

READ(S,*) MATNO,EM(MATNC),VNU(MATNO),Y(MATNO)
READ(5,2398) MATNO,EM(MATNO),VNU(MATNO),Y(MATNO)

CX 2398 FORMAT(IS,F10.0,F10.4,F10.0)

READ(5,2202) RN,H1,H2,AA1,AA2,C2,D0,81,TEMP, TMELT, QS
2202 FORMAT(4E15.7)

WRITE(6,2203) RN,H1,H2,AA1,AA2,C2,D0,B1,TEMP, TMELT, QS

2203 FORMAT(10X,’RN = ’ £15.7,1X,‘H{ = * E15.7./,

UhWN

10X,’H2 = 7 E15.7,1X,‘AA1 = ‘' E15.7,/.
10X, ’AA2 = ’ E15.7,1X,’C2 = ’ E15.7,/,
10X, ‘DO = ’,E15.7,1X,’B1 = ’ E15.7,/,

10X, 'TEMP = ’ E15.7,1X, TMELT = ’,E15.7./,

10X, 'QSTAR = * E15.7,/)

222 CONTINUE

5008
5004
5007

453

450
5095

455

CX
CXCX

DO 5007 J=1,NEL

IF{(MTYPE(J).NE.3) GO TO 5004

EPBAR(U)=0.0

IPLAS(U)=0

SIGBAR(J)=DO

DO 5008 1=1,4

ALPHA(I,J)=0.0

CONTINUE

CONTINUE

CONTINUE

IF(MODNUM4 .EQ.0) GO TO 4S5

GO TO 450

WRITE(G,5095)

FORMAT (10X, "MATERIAL MODEL NOT IN CODE’,//)

sSTOP

CONTINUE

IF(IINT.EQ.O) GO TO 9999
READ(S,*) NINT1,NINT2,ETA

READ(5,4001) NINT1,NINT2,ETA

CXCX 4001 FORMAT(2I5,£15.7)

CX
CXCX

READ(5,*) SIGMAX,DELTA,ALPH,DBFAC
READ(5,4002) SIGMAX,DELTA,ALPH,DBFAC

CXCX 4002 FORMAT(4E£15.7)

CX

WRITE(6,4003)

CX 4003 FORMAT(/,5X, INTERFACE ELEMENTS IN EFFECT’,/)
WRITE(6,4004) NINT1,NINT2,SIGMAX,DELTA,ALPH

CX

CX
CX
CX
CX
CX
CX
CcX
CX
CX
CX
CX
Cc

o]

[

[eXeNe]

15,/, 10X,
“AND END AT NODE NUMBER’,IS5,/,

10X, 'LENGTH PARAMETER = ‘,E15.7,/,

DADWN =

E15.7./)
WRITE(6,4008) DBFAC,ETA

4004 FORMAT (10X, 'INTERFACE ELEMENTS START AT NODE NO. -,

10X, ‘RATIO SHEAR/NORMAL INTERF. STIFFNESS =

4008 FORMAT( 10X, '‘DEBOND COMPRESSIVE FACTOR = ‘,E15.7,/

1 10X, "UNLOADING STRETCH FACTOR = ‘' ,E15.7,/)

READ IN NO. OF INTRF ELEMS AND GROUPS
READ(5,*) NIFEM, NIFGP
READ IN FIRST AND LAST ELEMENT
D0 SO00 J = 1, NIFGP
READ(S5,*) ITGPL(J,1), ITGPL(J,2)
CONTINUE
READ IN INTRF CONNECTIVITY MATRIX

DO S050 U = 1, NIFEM
READ(S,*) ITCON(J,1), ITCON(J,2)

10X, 'MAX NORMAL INTERFACE STRESS = ‘,E15.7,/.

s



S050 CONTINUE

o
C READ IN INTERFACE CONSTITUTIVE CONSTANTS
Cc
DO 5400 J = 1, NIFGP
READ(5,*) SIGMAX(J), DELTAN(J), DELTAT(J), ALPH(J), ETA(J),
1 DBFAC(J), RMU(J), RMPi(J), RMP2(J), RMP3(J)
C
C COMMON BLOCK SET FOR RMP1(10) TO RMP10( 10)
C USE ONLY RMP1(J) TO RMP3(J) FOR NOW
C
5400 CONTINUE
Cc
C READ IN SELECTED ELEMENT NUMBERS FOR STRESS QUTPUT
C

READ(S,*) ISELSIG
IF { ISELSIG .NE. O ) THEN
READ(S5,*) NUMSELSIG
READ(5,*) (MSELSIG(J), J = 1, NUMSELSIG)
WRITE(6,5475) NUMSELSIG
5475 FORMAT(//,10X,I5,' ELEMENTS SELECTED FOR STRESS OUTPUT:’,/)
WRITE(6,5485) (MSELSIG(J), J=1,NUMSELSIG)
5485 FORMAT(5I5)
ENDIF

OQUTPUT INTERFACE ELEMENT INFORMATION

[eNeNel

WRITE(6,5100)
5100 FORMAT(//,10X, INTERFACE ELEMENTS IN EFFECT’,/)
IF ( NIFGP .GT. 1 ) THEN
WRITE(6,5150) NIFEM, NIFGP
5150 FORMAT (10X, ’THERE ARE “,15,‘’ INTERFACE ELEMENTS.’,/
1 10X, /THEY ARE DIVIDED INTO ‘,15,’ GROUPS.’,/)
ELSE
WRITE(6,5152) NIFEM, NIFGP
5152 FORMAT (10X, 'THERE ARE ,IS5,’ INTERFACE ELEMENTS.‘,/
1 10X, 'THEY ARE ASSIGNED TO ‘,IS,’ GROUP.’./)
ENDIF
WRITE(6,5160)
5160 FORMAT(/, 10X, ‘GROUP NO.’, 10X, ‘FIRST INTRF. ELEM. ",
1 10X, LAST INTRF. ELEM.’,/)
WRITE(6,5170) ( J,ITGPL(J,1),ITGPL{(U.2) ,J=1,NIFGP)
5170 FORMAT(10X,15,18X,15,22X,15)
WRITE(6,5200)
5200 FORMAT(//,10X,  INTERFACE ELEMENT NO.‘,5X, ‘NODE 1’, 10X,
1 NODE 2/,/)
WRITE(6,5250) ( J,ITCON(J,1),ITCON(J,2) , J=1,NIFEM)
5250 FORMAT(16X,15,12X,I5,10X,15)
DO 5275 J = 1, NIFGP
WRITE(6,5300) J, SIGMAX(J), DELTAN(J), DELTAT(J). ALPH(Y),
1 ETA(J), DBFAC(J), RMU(J), RMP1(J), RMP2(dJ), RMP3(J)
5275 CONTINUE
cX
CX5300 FORMAT(//, 10X, ‘GROUP NO.’,15,/

CX 1 10X, ‘MAX NORMAL INTERFACE STRESS= ‘,E15.7,/,

CX 2 10X, ‘NORMAL LENGTH PARAMETER= ‘,E15.7,/,

CX 3 10X, 'TANGENTIAL LENGTH PARAMETER= ‘,E15.7,/,

CX 4 10X, ' SHEAR/NORMAL INTERFACE STIFFNESS RATIO= ’,E15.7./.
CX S5 10X, "UNLOADING STRETCH FACTOR= ’,£15.7,/

CcX 6 10X, ‘DEBOND COMPRESSIVE FACTOR= ‘,E1S5.7,/

CX 7 10X, "INTERFACIAL COEFFICIENT OF FRICYION= ’ ,E15.7,/)
CX

C KACHANQV’S MODEL

5300 FORMAT(//,10X, ‘GROUP NO.’,IS,/

1 10X, YOUNGS MODULUS= ’,E15.7,/,
2 10X, ‘POISSONS RATIO= ’,E15.7,/,
3 10X, “SHEAR MODULUS= ‘ ,E15.7,/,
4 10X, "CRITICAL TENSILE STRAIN= ‘,E15.7,/,
5 10X, ‘RLAMDA= ‘' ,E15.7,/,
© 10X, ‘RL= ' ,E15.7,/,
7 10X, ‘RBETA= ’ ,E15.7,/,
8 10X, 'RMP1= / E15.7,/,10X,'RMP2= ' [E15.7,/, 10X, 'RMP3= ' ,E15.7./)
CX
8998 CONTINUE
RETURN
END
o]
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C
C SUBROUTINE KGLOB



THIS SUBROUTINE CALCULATES THE LINEAR OR NONLINEAR GLOBAL
STIFFNESS MATRIX

**#*k*************tl‘l*********t****************************t***

[oNeNeNoNe Ne]

SUBROUTINE KGLOB(KGL,NODE,NTOT,NDOF)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 KGL(2400.600),KEL(6,6).B(3,6),BC(6,3),C(3,3),T(1500),
1 DS(1500,4) ,KGS(2400,600) ,RKINT(4,4),DN(500),DT(500)
INTEGER NODE (1500,3),NDOF( 1500) ,NICON(2) ,MATSET(1500),MTYPE( 1500)
COMMON/CHIST/RTOL ,NN,NEL ,NF ,NDBC, IDUMP, IPRI, ISREF,
i IEQUIT, ITEMAX, ITEMP, TINT
cX COMMON/ INTFAC/NINT1,NINT2,SIGMAX ,DELTA,ALPH,DBFAC,DN,DT,ETA
COMMON/INTFAC/NIFEM,NIFGP,ITGPL(10,2),ITCON(500,2),
SIGMAX(10) ,DELTAN(10) ,DELTAT(10),ALPH(10),
ETA(10),DBFAC(10),DN,DT, INTDF(500), INTSP(500)
,RMU(10),DISPN(500),DISPT(500),TNRATIO(500),
XRHO(500), SIGNN(500), TAUNT(S00) ,FN(500),FT(500)
COMMON/MODPARA/RMP1( 10) ,RMP2( 10) ,RMP3( 10) ,RMP4( 10) ,RMP5( 10),
1 RMPG( 10) ,RMP7(10) ,RMP8(10) ,RMPS( 10) ,RMP10( 10)
COMMON/AREA 1/B
COMMON/AREAS/T ,MATSET ,MTYPE
COMMON/AREA7/NSTE, INCR, ITER
COMMON/BANDED/MAXBW
COMMON/STIF/KGS
DO 44 I=1,NTOT
DO 44 J=1,MAXBW
44 KGL(I,u)=0.
DO 99 I=1,NEL
C DETERMINE ELEMENT STIFFNESS MATRIX
CALL SHAPE(I,IDUMP,AREA)
IF(MTYPE(I).EQ.1) GO TO 451
IF(MTYPE(I).EQ.2) GO TO 452
IF(MTYPE(I).EQ.3) GO TO 453
IF(MTYPE(I).EQ.4) GO TO 454
450 WRITE(6,6003)
6003 FORMAT (10X, 'MATERIAL TYPE NOT IN CURRENT LIBRARY’,/)
STOP
451 CALL ELAS2D(I,C,DS,MATSET(I))
GO TO 455
452 CALL PLAS2D(I,C,DS,1,MATSET(I))
GO TGO 455
453 CONTINUE
CALL VPLAS2D(I,C,DS,1,MATSET(I))
GO TO 455
454 GO TO 450
455 CONTINUE
DO 66 L=1,6
DO 66 J=1,3
BC(L,J)=0.
DO 66 K=1,3
66 BC(L,J)=BC(L,J)+B(K,L)*C(K,UJ)
DO 67 L=1,6
DO 67 J=1,6
KEL(L,J)=0.
DO 67 K=1,3
67 KEL(L,J)=KEL(L,J)+BC(L,K)*B(K,J)
DO 68 L=1,6
DO 68 U=1,6
68 KEL(L,J)=AREA*KEL(L,uJ)*T(I)
IF(IDUMP.LT.4) GO TO 7777
WRITE(6,2011) I
2011 FORMAT(//,20X, ELEMENT STIFFNESS MATRIX FOR ELEMENT NO.’,
1 13,//7)
DO 54 L=1,6
54 WRITE(6,2012) (KEL(L,J),d=1,6)
2012 FORMAT(4(5X,E15.7) )
7777 CONTINUE
C ASSEMBLE ELEMENT STIFFNESS MATRIX INTO GLOBAL LINEAR STIFFNESS
C MATRIX
CALL ASEMBL(KGL,KEL,3,NODE,2,1I)
99 CONTINUE
IF(IINT.EQ.O0) GO TO @8

HrON

CX NINEL=NINT2-NINT{+1

CX I1=NINT1

CX I2=T1+NINEL

CX DO 97 I=1,NINEL

CX CALL INTRFACE(I,I1,I2,RKINT)

CX NICON(1)=11



CcX NICON(2)=I2

CX CALL ASEMINT(KGL,RKINT,2,NICON,2)
CX I1=11+1

CX I2=12+1

CX 97 CONTINUE

CX

DO 500 I = 1, NIFGP
DO 550 J = ITGPL(I,1), ITGPL(I,2)
IF ( J .EQ. ITGPL(I,1) ) THEN

ITFLAG = 1
ELSE IF ( J .EQ. ITGPL(I,2) ) THEN
ITFLAG = 2
CX
CX SPECIAL TRUSS ELEMENT FOR FORCE CALCULATIONS
ELSE IF ( ITGPL(I,1) .EQ. ITGPL(I,2) ) THEN
ITFLAG = 3
CX
CX
ELSE
ITFLAG = ©
ENDIF

I1 = ITCON(J.1)
I2 = ITCON(J,2)
CALL INTRFACE(J,I1,I2,RKINT,ITFLAG,I)
NICON(1) = I1
NICON(2) = 12
CALL ASEMINT(KGL,RKINT,2,NICON,2)
S50  CONTINUE
S00  CONTINUE
cX
98 CONTINUE
IF(IDUMP.LT.4) GO TO 6666
WRITE(6,2013)
2013 FORMAT(//,20X, 'GLOBAL LINEAR STIFFNESS MATRIX',//)
WRITE(6,2040) ((KGL(II,JJ),Jud=1,MAXBW),II=1,NTOT)
2040 FORMAT(4(5X,E15.7) )
6666 CONTINUE
DO 988 I=1,NTOT
DO 988 J=1,MAXBW
988 KGS(I,J)=KGL(I,J)

APPLY DISPLACEMENT BOUNDARY CONDITIONS
ZERO-ONE TREATMENT TO STIFFNESS MATRIX

OO0

DO 988 I=1,NDBC
JU=NDOF (1)
KGL(JJ,1)=1.0
DO 50 J=2,MAXBW
50 KGL(JJ,J)=0.D0O
JU=dJ-1
M=2
51 IF(M.GT.MAXBW.OR.JJU.LT.1) GO TO 52
KGL (JJ,M)=0.D0
Ju=dd-1
M=M+ 1
GO TO 51
52 CONTINUE
999 CONTINUE

C

C
RETURN
END

C

C***l‘l************************#***#t*#*************t#*************

SUBROUTINE SHAPE

THIS SUBROUTINE CALCULATES THE P AND D MATRICES

****#**********************t****t**#t#t**tt*****#tt*#***********

OO0O0OOO0OO0

SUBROUTINE SHAPE(I,IDUMP,AREA)

IMPLICIT REAL*8(A-H,0-2)

REAL*B B(3,6),A1(1200),A2(1200),T(1500)

INTEGER NODE(1500,3),NDOF(1500) ,MATSET(1500) ,MTYPE( 1500)
COMMON/AREA1/B

COMMON/AREA2/NODE , NDOF

COMMON/AREAS/T ,MATSET ,MTYPE

COMMON/AREAG/A1,A2

COMMON/AREA7/NSTE, INCR, ITER



X1=A1(NODE(I.1))

X2=A1(NODE(I,2))

X3=A1(NODE(1,3))

Z1=A2(NODE(I,1))

22=A2(NODE(I1,2))

23=A2(NODE(I,3))

AREA= (x2*za+x1*22+x3*z1 -X2%Z1-X3*22-X1%23)/2.

B(1,1)=(22-23)/2./AREA

B(2,2)=(X3-X2)/2./AREA

B(1,3)=(23-21)/2./AREA

B(2,4)=(X1-X3)/2./AREA

B(1.,5)=(21-22)/2./AREA

B(2,6)=(X2-X1)/2./AREA

B(1,2)=0.

B(1,4)=0.

B(1,6)=0.

B(2,1)=0.

B(2,3)=0.

B(2,5)=0.

B(3,1)=B(2,2)

B(3,2)=B(1,1)

B(3,3)=B(2,4)

B(3,4)=B(1,3)

B(3,5)=8(2,6)

B(3,6)=B(1,5)

IF(IDUMP.LT.4) GO TO 4637

ISHAPE=0

IF(ISHAPE.NE.1) GO TO 4637

DO 4635 J=1,3

WRITE(6,4638)(B(J.K).K=1,6)
4639 FORMAT(’ ’,2X,6(E13.6,2X))
4635 CONTINUE

WRITE(6,4638) AREA,T(I)
4638 FORMAT(’ ‘,3X, AREA=',E14.7,3X, 'THICKNESS=",E14.7,//)
4637 CONTINUE

RETURN

END
c
C************************tt**ttt***#**#**********t*************
c
c SUBROUTINE INTRFACE
c
C**************lt*****t***#***#t*t*t*t**#tt***t****#t***********
c

SUBROUTINE INTRFACE(II,I1,I2,RKINT,ITFLAG,IG)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 RKINT(4,4), 0(2400) T(1500),A1(1200),A2(1200),

1 DN(500),DT(500)

DIMENSION MATSET(1500),MTYPE(1500)

COMMON/CHIST/RTOL,NN,NEL.NF,NDBC.IDUMP.IPRI.ISREF,

1 IEQUIT,ITEMAX,ITEMP,IINT
COMMON/DISPHIS/DELTAQ(2400) WORKN(SOO) WORKT(500),FSEPN(500),
1 FSEPT(500)

COMMON/AREA4/Q

COMMON/AREAS/T ,MATSET ,MTYPE
COMMON/AREAG/A1,A2
COMMON/AREA7/NSTE, INCR, ITER
cX COMMON/INTFAC/NINT1 NINT2,SIGMAX,DELTA,ALPH,DBFAC,DN,DT,ETA
COMMON/INTFAC/NIFEM,NIFGP, ITGPL(10,2), ITCON(SOO 2),
SIGMAX(10), DELTAN(10) DELTAT(10),ALPH(10),
ETA(10),DBFAC(10),DN,DT, INTDF(SOO) INTSP(SOO)
.RMU(10) ,DISPN(S00), DISPT(SOO) TNRATIO(500),
ano(soo) SIGNN(500), TAUNT(S00),FN(500),FT(500)
COMMON/MODPARA/RMP1(10) RMP2(10),RMP3(10),RMP4(10) ,RMP5(10),
RMP6(10) ,RMP7(10) ,RMPB( 10) ,RMP9( 10) . RMP 10( 10)
PI 3.141592654
If ( ITFLAG .EQ. 3 ) GO TO 711
cX NINEL=NINT2-NINT 1+1
c
C CALCULATE INTERFACE (NORMAL) ANGLE PHI AND WIDTH W
c

HBWON

CX
IIMIX = II - A
I1PiX = II + 1
IiM1 = ITCON(I1M1IX, 1)
I1P1 = ITCON(I1P1X,1)
CX WRITE(6,100) I1M1, A1(I1M1), A2(I1M1)
CX WRITE(6,100) I1, A1(I1), A2(I1)
CX WRITE(6,100) I1P1, A1(I1P1), A2(I1P1)

CX100 FORMAT(/,5X,15, 10X,E15.4, 10X ,E15.4,/)



CX

IF ( A2(I1M1) _EQ. A2(If) ) THEN ! MODIFIED FOR 90 DEG.
PHI1 = PI / 2.0

ELSE
PHI1=DATAN((A1(I1)-A1(I1M1))/(A2(T1iM1)-A2(I1)))

ENDIF

IF ( A2(It) .EQ. A2(I1P1) ) THEN ! MODIFIED FOR 90 DEG.
PHI2 = PI / 2.0

ELSE
PHI2=DATAN((A1(I1P1)-A1(11))/(A2(11)-A2(11P1)))

ENDIF

WiW1l = ( A1(I1) - A1(I1M1) ) **2 +
1 ( A2(I1M1) - A2(I1) )*=2
waw2=( A1(I1P1) - A1(I1) )**2 +

1 ( A2(I1) - A2(I1P1) )*x2

Wi = SQRT(Wiw1)
W2 = SQRT(W2W2)
c
C ACCOUNT FOR FIRST AND LAST ELEMENT
c
CX IF(I1I.GT.1) GO TO 334
cX IF(PHI2.LT..001) GO TO 443
cX PHI1=3.14159265-PHI2
cX GO TO 3314

CX 443 PHI1=PHI2
CX 3314 Wi=0.
CX 334 CONTINUE

CX IF(II.LT.NINEL) GO TO 335
cX IF(PHI1.LT..001) GO TO 444
CXCX PHI2=-PHI 1

CX PHI2 = PHI1

CX GO TO 3334

CX 444 PHI2=PHI1
CX 3334 w2=0.
CX 335 CONTINUE

711 CONTINUE
IF ( ITFLAG .EQ. 1 ) THEN

PHI1 = PHI2
wi = 0.0
ELSE IF ( ITFLAG .EQ. 2 ) THEN
PHI2 = PHI{
w2 = 0.0
CX FORCE CALCULATION TRUSS ELEMENT
CX
ELSE IF ( ITFLAG .EQ. 3 ) THEN
Wi = 1.0
w2 = 1.0
PHI{ = PI / 2.0
PHI2 = PI / 2.0
CX
CX
ENDIF
CX
o]
C INITIALIZE INTERFACE ELEMENT STIFFNESS RKINT
C
DO 9 I=1,4
DO 9 J=1,4
9 RKINT(I,J)=0.
C

C CALCULATE INTERFACE DISPLACEMENTS UN1,UN2,UT1,UT2
c
N1X=2*I1-1
N1Y=N1X+1
N2X=2%12-1
N2Y=N2X+1
PHIAV=(PHI1+PHI2)/2.
UX=Q(N2X)-Q(N1X)
UY=Q(N2Y)-Q(N1Y)
cy UN=UX*DCOS (PHIAV)+UY*DSIN(PHIAV)
cy UT=-UX*DSIN(PHIAV)+UY*DCOS(PHIAV)
THETAI = PHIAV - ( PI / 2.0 )

UN = -UX * DSIN(THETAI) + UY * DCOS(THETAI)
UT = UX * DCOS(THETAI) + UY * DSIN(THETAI)
cy
DN(II)=UN
DT(II)=UT
C

DUX = DELTAQ(N2X) - DELTAQ(N1X)



ouUY
DUN
DUT

DELTAQ(N2Y) - DELTAQ(N1Y)
-DUX * DSIN(THETAI) + DUY * DCOS(THETAI)
DUX * DCOS(THETAI) + DUY * DSIN(THETAI)

CALCULATE NORMAL AND SHEAR STIFFNESS COMPONENTS
RKN1,RKN2,RTN1,RTN2

>

ASSIGN VARIABLES FOR KACHANOV'S MODEL

OO00O0000O0

EO = SIGMAX(IG)
RNU = DELTAN(IG)
GO = DELTAT(1G)
ESPCRIT = ALPH(IG)
RLAMBDA = ETA(IG)
RL = DBFAC(IG)
RBETA = RMU(IG)
c CHANGE EO AND RNU TO PLANE STRAIN CONDITIONS
EO = EO / ( 1.0 - (RNU**2) )
RNU = RNU / ( 1.0 - RNU )

CX
IF ( ITFLAG .EQ. 3 ) GO TO 713
CX
C NOTE: THESE ARE TANGENT STIFFNESSES
C
(C % 30 3Kk ok koK o ok o ok ok oo Ok K K K K K K ko ok ek ok K K K oK o K
C NEEDLEMAN OR TVERGAARD
CcX UND = UN / DELTAN(IG)
CX UTD = UT / DELTAT(IG)
C
C ________________________________________
Cc KACHANQOV
C
UND = UN / RL
UTD = UT / RL
DUND = DUN / RL
DUTD = DUT / RL
C

C***t****************t*****t***************t**t***t****t***************

KACHANOV ‘S MODEL

STIFFNESS CALCULATIONS

******t**************#*******************!t**tlt*t*‘******************

AREA. ... ... .. TRUSS ELEMENT CROSS SECTIONAL AREA

RL. ... THICKNESS OF INTERFACE (INP.)

EO. ... YOUNG’S MODULUS OF INTERFACE (INP.)
......................... SHEAR MODULUS OF INTERFACE (INP.)

RNU. ... ... ... ... ... .. .... POISSION’S RATIO OF INTERFACE (INP.)

ESPCRIT....... ... .. ... ..... CRITICAL TENSILE STRAIN (INP.)

RLAMBDA. ... ................ DAMAGE GROWTH PROPORTIONAL CONST. (INP.)

RAREA. . ... ... .. ... .. .. .... AREA OF DAMAGED ZONE

RLENGTH. . .................. CRACK LENGTH

RBETA. .. ... ... .. .. RLENGTH / RL (INP.)

l*****t************!********t*************t***#t‘lttt*****#************

X CALCULATE PRINCIPLE NORMALIZED DISPLACEMENTS

[sNsNEeNoNsNoNoNoNo R NoNoNoNoNoNoReNe e Ne Ne N el
[}
o]

RLSQ = ( UND / 2.0 )**2 + ( UTD / 2.0 )*%*2
RLAM = SQRT( RLSQ )

UM1 = UND / 2.0 + RLAM

UM2 = UND / 2.0 - RLAM

UMAX = DMAX1( UM1 , UM2 )

AREA = ( W1 + W2 ) / 2.0 * T(1)

RAREA = AREA / T(1) * RL

IF ( UMAX .LE. ESPCRIT ) THEN ! INTERFACE INTACT

IF ( UND .EQ. 0.0 .AND. UTD .EQ. 0.0 ) THEN

Q22 = EO / ( 1.0 - RNU*RNU )
Q66 = GO
RKN = Q22 * AREA / RL
RKT = Q66 * AREA / RL
ELSE
IF ( UND .LT. 0.0 ) THEN ! MODIFY DISPLACEMENTS

UNDC = 0.0 ! FOR COMPRESSIVE LOADS



UTDC = UTD
ELSE
UNDC = UND
uTDC = UTD
ENDIF
c
c TRANSFORM NORMALIZED DISPLACEMENTS TO PRINCIPLE DAMAGE
c COORDINATES (1,2)
c (CURRENTLY ASSUME ALL MATRIX CRACKS TO BE ORIENTED
c AT AN 45 DEGREES ANGLE)
c
P4 = PI / 4.0
P42 = P4 * 2.0
DC2 = DCOS(P4) * DCOS(P4)
(¢ UNDPD = -UTD*DSIN(P4) + UND*DCOS(P4)
CcX UTDPD = UTD*DCOS(P4) + UND*DSIN(P4)
UNDPD = UNDC * DC2 - ( 0.5 * UTDC ) * DSIN(P42)
UTDPD = 0.5 * UNDC * DSIN(P42) + ( 0.5 * UTDC ) * DCOS(P42)
DUNDP = DUND * DC2 - ( 0.5 * DUTD ) * DSIN(P42)
DUTDP = 0.5 * DUND * DSIN(P42) + ( 0.5 * DUTD ) * DCOS(P42)
c
C DETERMINE EFFECTIVE PROPERTIES
c
cxXX
cXX MODIFICATION FOR STRESS DEPENDENT DAMAGE GROWTH
CcXX
cX RI = RLAMBDA * DABS(UNDPD) ! RLAMBDA * UNDPD
CXX RI = RLAMBDA * DABS(UTDC) ! RLAMBDA * UTDC
CXX RLENGTH = RBETA * RL ! RBETA * RL
CXX RHO = RI * RLENGTH**2 / RAREA
CXX RHO = DMAX1( RHO, XRHO(II) )
CXX XRHO(II) = RHO
CXXY RHO = XRHO(II)
CXX
RHO = XRHO(II)
E1 = EO ! EQO DEPENDS ON PLANE STRESS
E2 = EO / ( 1.0 + 2. 0*PI*RHD ) ! OR PLANE STRAIN CONDITIONS
RNU12 = RNU
RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)
G12 = GO / ( 1.0 + 2.0*PI*RHO*(GO/EQ) )
c
c FORM REDUCED STIFFNESS MATRIX
c
Q11 = E1 / ( 1.0 - RNU12*RNU21 )
Q12 = RNU21 * Q11
Q22 = E2 / ( 1.0 - RNU12*RNU21 )
Q66 = Gi12
CXX
CXX BEGIN CXX MODIFICATIONS HERE
CcXX
c CALCULATE PRINCIPAL STRESSES
c
CXX SIGNN(II) = SIGNN(II) + Q22 * DUNDP
CXX TAUNT(II) = TAUNT(II) + Q66 * DUTDP
CXX SIGSIG = ( SIGNN(II) / 2.0 )**2 + ( TAUNT(II) / 2.0 )*x2
CXX RSIG = SQRT(SIGSIG)
CXX SIGM1 = SIGNN(II)/2.0 + RSIG
CXX SIGM2 = SIGNN(II)/2.0 - RSIG
CXX SIGPRIN = DMAX1(SIGM1,SIGM2)
CXX TAUMAX = RSIG
c
c CALCULATE THE VALUE OF RHO (MICRO CRACK DAMAGE)
c
cXyY RI = RLAMBDA * DABS(SIGPRIN)
CXY RLENGTH = RBETS * RL
CcXy RHO = RI * RLENGTH**2 / RAREA
CXY XRHO(II) = DMAX1( RHO, XRHO(II) )
c
c CALCULATE EFFECTIVE PROPERTIES WITH UPDATED VALUE OF RHO
c
CXY E1 = EO ! EO DEPENDS ON PLANE STRESS
cXY E2 = EO / ( 1.0 + 2.0*PI*RHO ) ! OR PLANE STRAIN CONDITIONS
CXY RNU12 = RNU
CXY RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)
cXY G12 = GO / ( 1.0 + 2.0*PI*RHO*(GO/EQ) )
o
c FORM REDUCED STIFFNESS MATRIX
c
CXY Q11 = E1 / ( 1.0 - RNU12*RNU21 )
cXY Q12 = RNU21 * Q11



cxXy Q
cXy Q
CXX
CXX END
CXX
C
C TRANSFO
C
PN4
QBAR
1
2
QBAR
1
2
QBAR
1
2
QBAR
1
QBAR
1
QBAR
1
2
C
C INVERT
C S22 AND
C ED22 AN
C
CX S2
CX 1
CX 2
CX 3
CX S6
CX 1
CX 2
CX 3
CX ED
CX GD
CcYXx
CX WRITE(G,

CX 8899 FORMAT(S
CcyXx

CcX RK
CX RK
RKN
RKT
C
IF (
cy
R
cy
ENDI
CX CH
IF (
R
I
E
ENDI
ENDIF
C
ELSE
C
IF (U
Q22
cY R
RKN
cYy
RKT
ELSE
RKN
RKT
ENDIF
ENDIF
C

% % Kok %k ok % % Kk kK kK

C

22 = E2 / ( 1.0 - RNU12*RNU21 )
66 = G12
CXX MODIFICATION

RM SELECTED STIFFNESS COMPONENTS TO INTERFACIAL COORD.
(-45 DEG)

-PI / 4.0

Q11*DCOS(PN4)**4

+ 2.0%( Q12 + 2.0*Q66 )*DSIN(PN4)**2*DCOS(PN4)**2

+ Q22*DSIN(PN4)**4

( Qi1 + Q22 - 4.0%Q66 )*DSIN(PN4)**2

*DCOS(PN4 ) **2

+ Q12*( DSIN(PN4)**4 + DCOS(PN4)**4 )

Q11*DSIN(PN4)**4

+ 2.0%( Q12 + 2.0%Q66 )*DSIN(PN4)**2+DCOS(PN4)**2

+ Q22*DCOS(PN4)**4

( Q11 - Q12 - 2.0*Q66 )*DSIN(PN4)*DCOS(PN4)**3

+ ( Q12 - Q22 + 2.0%066 )*DSIN(PN4)**3*DCOS(PN4)

( Q11 - Q12 - 2.0*%Q66 )*DSIN(PN4)**3*DCOS(PN4)

+ ( Q12 - Q22 + 2.0%Q66 )*DSIN(PN4)*DCOS(PN4)*=*3

( Q11 + Q22

- 2.0*%(Q12+Q66) ) *DSIN(PN4 ) **2*DCOS(PN4) **2

+ Q66*( DSIN(PN4)**4 + DCOS(PN4)**4q )

11

12

22

16

26

66

TRANSFORMED REDUCED STIFFNESS MATRIX TO DETERMINE

S66 OF MATERIAL, THEN TAKE RECIPROCAL TO GET

D GD12

2 = ( QBAR11 * QBAR66 - QBAR16**2 ) /

( QBAR11 * QBAR22 * QBARG66 - QBAR12**2 * QBARG6 -
QBAR11 * QBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -
QBAR16**2 * QBAR22 )

6 = ( QBAR11 * QBAR22 - QBAR12**2 ) /

( QBAR11 * QBAR22 * QBARGG - QBAR12**2 * QBAR66 -
QBAR11 * QBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -
QBAR16**2 * QBAR22 )

22 1.0 / s22

66 1.0 / sés

8899) ED22,GD&6

X, ED22= ’,E15.5,5X,’'GD66= ‘,E15.5)
ED22
GD66
QBAR22
QBARGE

AREA / RL
AREA / RL
AREA / RL
AREA / RL

*
*
*
*

UND
RKN
KN

.LT. 0.0 ) THEN !
10.0E2 * QBAR22 * AREA / RL
QBAR22 * AREA / RL

MODIFY NORMAL STIFFNESS
! FOR COMPRESSIVE LOADS

F
ECK FOR PRIOR INTERFACIAL FAILURE

INTDF(II) .GT. O ) THEN
KT = 0.0
F ( UND .GT. 0.0 ) THEN
RKN = 0.0
NDIF
F
! INTERFACE SEPARATED
ND .LT. 0.0 ) THEN
= EQO / ( 1.0 - RNU*RNU )
KN = 10.0E2 * Q22 * AREA / RL
= Q22 * AREA / RL
= 0.0
= 0.0
= 0.0

xkxkxk%x k% END KACHANOV 'S MODEL % % % % 3 sk o sk ok sk ok ok ok ook k% ok ok ok ok ok ok % ok



713 CONTINUE
cX FORCE CALCULATION ELEMENT
cX
IF ( ITFLAG .EQ. 3 ) THEN
AREA = ( W1 + W2 ) / 2.0 * T(1)

Q22 = EO / ( 1.0 - RNU*RNU )
Q66 = GO
RKN = Q22 * AREA / RL
RKT = Q66 * AREA /RL
ENDIF
CX
CX
Cc
C CALCULATE RKINT MATRIX
Cc

C1=DCOS( PHIAV )
S1=DSIN( PHIAV )
C2=DCOS( PHIAV - PI/2. )
S2=DSIN( PHIAV - PI/2. )
IF(IDUMP.LT.3) GO TO 666
WRITE(6,1001) C1,C2,51.S2
1001 FORMAT(10X,’C{ =’ ,E15.7,5X,'C2 = ' ,E15.7./,
1 10X,’S1 = ‘,E15.7,5X,’S2 = ’,E15.7./)

666 CONTINUE
cy NEW
RKINT(1,1)= RKN*C1**2 + RKT*C2**2
RKINT(1,2)= RKN*C1*S1 + RKT*C2*S2
RKINT(1,3)= ~-RKN*C1*%2 - RKT*C2%**2
RKINT(1,4)= -RKN*C1*S1 - RKT=*C2*S52
RKINT(2,2)= RKN*S1%*2 + RKT*S2%*2
RKINT(2,3)= -RKN*C1*S{ - RKT*C2%*S2
RKINT(2,4)= -RKN*S1**x2 - RKT*S2%*2
RKINT(3,3)= RKN*C1**2 + RKT*C2%*2
RKINT(3,4)= RKN*C1*S1 + RKT*C2*S52
RKINT(4,4)= RKN*S1%%2 + RKT*S2%*2
cy oLD
(03 4 RKINT(1,1) = RKN*C1**2 + RKT*S1**2
cy RKINT(1,2) = -RKN*C1*S1 + RKT*C1*S4
cy RKINT(1,3) = -RKN*C1**2 - RKT*S1%*2
cy RKINT(1,4) = RKN*C1*S1 - RKT*C1*S1
cYy RKINT(2,2) = RKN*S1**2 + RKT*C1**2
cy RKINT(2,3) = RKN*C1*S1 - RKT*C1{*S1
cYy RKINT(2,4) = -RKN*S1%*2 - RKT*C{**2
cY RKINT(3,3) = RKN*C1**2 + RKT*S1%**2
cy RKINT(3,4) = -RKN*C1*S1 + RKT*C1*S{
cy RKINT(4,4) = RKN*S1**2 + RKT*C{**2

DO 99 uU=1,4
Ji=J+1
DO 99 I=J1,4
99 RKINT(I,J)=RKINT(J,I)
IF(IDUMP.LT.3) GO TO 667
WRITE(6, 1002)
1002 FORMAT (10X, ‘THE RKINT MATRIX IS‘.//)
DO 44 1=1,4
WRITE(6,1003) (RKINT(I,J),J=1,4)
1003 FORMAT(4(5X,E15.7))
44 CONTINUE
667 CONTINUE
RETURN
END
c

(© 7 o Kok kR K K K o oK ok kR K Kk ok ok o ok R ok oK ko kR oK ok kK R R R R KK R K R K R R R
SUBROUTINE ASEMINT

THIS ROUTINE ASSEMBLES THE INTERFACE ELEMENTS

A oK ok ok ok ok ik KOk o K ok ok ok ok kK ok Ak sk K Kok sk ok ak ki ok ok koK i K ok sk ik ok ok sk kR Kk K R K K K K R Kk K

[eNeNeNoNoNoNe]

SUBROUTINE ASEMINT(AK,RKINT,NPE,NICON,NDOFPN)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 AK(2400,600),.RKINT(4,4)
DIMENSION NICON(2)
Crmmmmmmm e > FIRST THE ROWS
00 10 JU = 1, NPE
NROW = ( NICON(JJ)} - 1 )*NDOFPN
D0 10 J = 1, NDOFPN
NROW = NROW + 1
1 = ( JJ-1 )*NDOFPN + U



C

———————————————— > THEN THE COLUMNS

DO 10 KK = 1, NPE

NCOLB = ( NICON(KK) - 1 )*NDOFPN

DO 10 K = {, NDOFPN

( KK-1 )*NDOFPN + K
NCOLB + K + 1 - NROW
---------------- > DO NOT STORE BELOW DIAGONAL
IF ( NCOL .LE. 0 ) GO TO 10O

AK(NROW ,NCOL ) =AK(NROW,NCOL )+RKINT(I,L)

10 CONTINUE

RETURN
END

C*****************t**********#*********************************1

[eNeNoNeNeNeNe]

c

C

%k Xk Xk K

X

33

34

55

8888

6009

6010
289
4935

SUBROUTINE FGLOB

THIS SUBROUTINE CALCULATES THE GLOBAL FORCE MATRIX

e e ok ok ok ek 3 K K K KOk o Kk ok e ok K oK ok o K R 3 Kk R K K K kA kK ok ok oK 6k ok ok oK K oK koK % K ok

SUBROUTINE FGLOB(FGL,FG,NTQOT,S)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 FEL(6),T{1500),FGL(2400),5(1500,4),A1(1200),A2(1200),
1 B(3,6),FG(2400),KGS(2400,600),Q(2400) ,FINT(4),DN(500),
2 DT(500)

INTEGER NODE( 1500, 3),NDOF(1500) ,MATSET{( 1500) ,MTYPE( 1500)

COMMON/CHIST/RTOL,NN,NEL ,NF ,NDBC, IDUMP, IPRI, ISREF,

1 IEQUIT,ITEMAX,ITEMP, IINT

COMMON/DISPHIS/DELTAQ(2400),WORKN(500),WORKT (500) , FSEPN(500),
1 FSEPT(500)

COMMON/AREA1/B

COMMON/AREA2/NODE , NDOF

COMMON/AREA4/Q

COMMON/AREAS/T ,MATSET,MTYPE

COMMON/AREAG6/A1,A2

COMMON/AREA7/NSTE, INCR, ITER

COMMON/LOAD/TIMV(1, 1000),RV(1, 1000), INODE(100), ICURVE( 100),
1 DINC(1000),DPMINC(1000) ,DMULT( 1, 1000)
COMMON/STIF/KGS
COMMON/BANDED/MAXBW

COMMON/INTFAC/NINT1,NINT2,SIGMAX,DELTA, ALPH,DBFAC,DN,DT,ETA

COMMON/INTFAC/NIFEM,NIFGP, ITGPL(10,2),ITCON(500,2),
SIGMAX(10) ,DELTAN(10) ,DELTAT(10).ALPH(10),
ETA(10),DBFAC(10),DN,DT,INTDF(500), INTSP(500)
,RMU(10) ,DISPN(500),DISPT(500), TNRATIO(500),
XRHO(500), SIGNN(500), TAUNT(500), FN(500), FT(500)

COMMON/MODPARA/RMP 1(10) ,RMP2(10) ,RMP3(10) ,RMP4( 10) ,RMP5( 10),

1 RMP6(10) ,RMP7(10) ,RMP8(10),RMP9(10),RMP10( 10)

NTOT=2*NN
DO 8888 I=1,NEL
CALL SHAPE(I,IDUMP,AREA)

DO 33 L=1,6
FEL(L)=0.

DO 33 K=1,3
FEL(L)=FEL(L)+S(I,K)*B(K,L)

DO 34 L=1,6
FEL(L)=FEL(L)*AREA*T(I)

DO 55 K=1,3
N2=NODE(I,K)*2-1
I1=2%(K-1)+1
FG(N2)=FG(N2)-FEL(II)

FG(N2+1)=FG(N2+1)-FEL(II+1)

CONTINUE
IF(IDUMP.LT.3) GO TO 4935
WRITE(6,6009)

FORMAT(//25X, ‘FG 1S’,//)

DO 999 I=1,NTOT
WRITE(6,6010) FG(I)

FORMAT (15X ,E16.7)

CONTINUE
CONTINUE

IF(IINT.EQ.O0) GO TO 9199

HBEWON

C INCLUDE FORCES CAUSED BY INTERFACE ELEMENTS

Cc

c
o
C

X
X
X

PI = 3.141592654
NINEL=NINT2-NINT1+1
I1=NINT1
I2=I1+NINEL



CX DO 4544 I=1,NINEL

cX
DO 4600 J = 1, NIFGP ! LOOP OVER GROUPS
DO 4544 I = ITGPL(J,1), ITGPL(J.2) ! LOOP OVER ELEMENTS
c
IF ( I .EQ. ITGPL(uY,1) ) THEN
ITFLAG = 1
ELSE IF ( I .EQ. ITGPL(J,2) ) THEN
ITFLAG = 2
cX FORCE CALCULATION ELEMENT
cX
ELSE IF ( ITGPL(J,1) .EQ. ITGPL(J.,2) ) THEN
ITFLAG = 3
cX
CcX
ELSE
ITFLAG = O
ENDIF
c
It = ITCON(I,1)
I2 = ITCON(I,2)
cX
IF ( ITFLAG .EQ. 3 ) GO TO 71t
I1MIX = I - Ao
I1PIX = 1 + 1
I1M1 = ITCON(I1M1X,1)
I1P1 = ITCON(I1P1X,1)
c
C CALCULATE INTERFACIAL NORMAL ANGLE, PHI
c
IF ( A2(I1M1) .EQ. A2(I1) ) THEN ! MODIFIED FOR 90 DEG.
PHIY = PI / 2.0
ELSE
PHI1=DATAN((A1(I1)-A1(I1M1))/(A2(I1M1)-A2(TI1)))
ENDIF
IF ( A2(I1) .EQ. A2(I1P1) ) THEN ! MODIFIED FOR 90 DEG.
PHI2 = Pl / 2.0
ELSE
PHI2=DATAN((A1(I1P1)-A1(I11))/(A2(I1)~-A2(I1P1)))
ENDIF
WIWI=(A1(I1)-A1(I1M1))**2 +
1 (A2(I1M1)-A2(TI1))*=*2
W2w2=(A1(I1P1)-A1(I1))**2 +
1 (A2(I1)-A2(11P1))**2
W1 = SQRT(WiW1)
W2 = SQRT(W2w2)
c
C ACCOUNT FOR FIRST AND LAST ELEMENT
c
cx IF(I.GT.1) GO TO 334
cX IF(PHI2.LT..001) GO TO 443
(4 PHI1=3.14159265-PHI2
cX GO TO 3314

CX 443 PHI1=PHI2
CX 3314 wW1=0.
CX 334 CONTINUE

cX IF(I.LT.NINEL) GO TO 335
CX IF(PHI1.LT..001) GO TO 444
CXCX PHI2=-PHI1

CcX PHI2 = PHI1

cX GO TO 3334

CX 444 PHI2=PHIA1
CX 3334 wW2=0.
CX 335 CONTINUE

cX
711 CONTINUE
IF ( ITFLAG .EQ. 1 ) THEN
PHI{ = PHI2
Wi = 0.0
ELSE IF ( ITFLAG .EQ. 2 ) THEN
PHI2 = PHI1
w2 = 0.0
cX FORCE CALCULATION ELEMENT
CcX
ELSE IF ( ITFLAG .EQ. 3 ) THEN
Wi = 1.0
W2 = 1.0
PHI1 = PI / 2.0
PHI2 = PI / 2.0

CX



CX

ENDIF
cX
N1X=2*T1-1
N1Y=N1X+1
N2X=2*12-1
N2Y=N2X+1
PHIAV=(PHI1+PHI2)/2.
cy UN=(Q(N2X)-Q(N1X) )*DCOS(PHIAV)+(Q(N2Y)-Q(N1Y) ) *DSIN(PHIAV)
cY UT=-(Q(N2X)-Q(N1X))*DSIN(PHIAV)+(Q(N2Y)-Q(N1Y) )*DCOS(PHIAV)
THETAI = PHIAV - ( PI / 2.0 )
UN = -(Q(N2X)-Q(N1X))*DSIN(THETAI) +
1 (Q(N2Y)-Q(N1Y))*DCOS(THETAI)
UT = (Q(N2X)-Q(N1X))*DCOS(THETAI) +
1 (Q(N2Y)-Q(N1Y) )*DSIN(THETAI)
cY
cX
(o] ASSIGN VARIABLES FOR KACHANOV’S MODEL
o]

EQO = SIGMAX(J)
RNU = DELTAN(U)
GO = DELTAT(J)
ESPCRIT = ALPH(J)
RLAMBDA = ETA(J)
RL = DBFAC(v)
RBETA = RMU(J)
c CHANGE EO AND RNU TO PLANE STRAIN CONDITIONS
EO = EO / ( 1.0 - (RNU**2) )
RNU = RNU / ( 1.0 - RNU )

cX
C********************************!*******
c NEEDLEMAN OR TVERGAARD
CcX UND = UN / DELTAN(J)
cX UTD = UT / DELTAT(J)
c
C ________________________________________
c KACHANOV
c
UND = UN / RL
UTD = UT / RL
c
C*********t*************t********tt****##
c
cX
IF ( ITFLAG .EQ. 3 ) GO TO 713
c
c
DUX = DELTAQ(N2X) - DELTAQ(N1X)
DUY = DELTAQ(N2Y) - DELTAQ(N1Y)
cY
cY DUN = DUX * DCOS(PHIAV) + DUY * DSIN(PHIAV)
cY DUT = -DUX * DSIN(PHIAV) + DUY * DCOS(PHIAV)
cY
DUN = -DUX * DSIN(THETAI) + DUY * DCOS(THETAI)
DUT = DUX * DCOS(THETAI) + DUY * DSIN(THETAI)
cY
DUND = DUN / RL
DUTD = DUT / RL
c

IF(IDUMP.LT.3) GO TO 6034
WRITE(6,1000) I1,PHI1,PHI2,W1,W2,UN,UT,UND,UTD
1000 FORMAT (10X, IN FGLOB ~ I1 = *,I13,/,10X,‘PHI{ = ‘ ,E15.7,

1 1X,PHI2 = / E15.7,/,10X, ‘W1 = * ,E15.7,
2 1X,’W2 =  E15.7,/,10X,’UN = ‘' E15.7,
3 1X,’UT = ¢ ,E15.7,/,10X,“UND = * ,E15.7,
4 1X,’UTD = *,€£15.7,/)
6034 CONTINUE
CX
cx WRITE(6,3000) I1,UND,UTD
cx 3000 FORMAT(10X, IN FGLOB - I{ = /,I3,/,15X,“UND = ’,E15.7,5X,
cx 1 ‘UTD = ’,E15.7,/)
CX
C
C CALCULATE NORMAL AND TANGENTIAL FORCE COMPONENTS
C FN,FT
C
CHrEkkkmkanrnskkaxnktoxs KACHANOV’S MODEL ek ok ok kK K K K K R Kk K
CX
C FORCE CALCULATIONS

C
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C
C AREA. .. ... .. ... ... ... TRUSS ELEMENT CROSS SECTIONAL AREA
[ RL. ... oL THICKNESS OF INTERFACE (INP.)
C EO. ... YOUNG’S MODULUS OF INTERFACE (INP.)
[ GO. ... SHEAR MODULUS OF INTERFACE (INP.)
C RNU. ... .. ... .. POISSION’S RATIO OF INTERFACE (INP.)
C ESPCRIT.................... CRITICAL TENSILE STRAIN (INP.)
C RLAMBDA. .. ... .............. DAMAGE GROWTH PROPORTIONAL CONST. (INP.)
C RAREA. . ... ... ... ....... ... AREA OF DAMAGED ZONE
C RLENGTH. .. ....... ... .. .. ... CRACK LENGTH
C RBETA. ... .. ... ... .. ....... RLENGTH / RL (INP.)
C
0%k M ok o o ke kK KK K KK K KK K R o ok K K K K K K K R K K K K ok K ok ok ok ok ok ok K K K oK oK ok o K R
C
CX CALCULATE PRINCIPLE NORMALIZED DISPLACEMENTS
C
RLSQ ( UND / 2.0)**2 + ( UTD / 2.0)**2

RLAM = SQRT( RLSQ )

uMm1 UND / 2.0 + RLAM
UM2 = UND / 2.0 - RLAM
UMAX = DMAX1( UM1 , uUM2 )

AREA (W1 + W2 )/ 2.0*T7(1)
RAREA = AREA / T(1) * RL
c
IF ( UMAX .LE. ESPCRIT ) THEN ! INTERFACE INTACT
c
IF ( UND .EQ. O.0 .AND. UTD .EQ. 0.0 ) THEN
Q22 = EO / ( 1.0 - RNU*RNU )
Q66 = GO
FN(I) = 0.0
FT(I) = 0.0
ELSE
IF ( UND .LT. 0.0 ) THEN ! MODIFY NORMALIZED
UNDC = 0.0 ! DISPLACEMENTS FOR
uTDC = UTD ! COMPRESSIVE LOADS
ELSE
UNDC = UND
UTDC = UTD
ENDIF
c
c TRANSFORM NORMALIZED DISPLACEMENTS TO PRINCIPLE DAMAGE
c COORDINATES (1,2)
c
P4 = PI / 4.0
P42 = P4 * 2.0
DC2 = DCOS(P4) * DCOS(P4)
cX UNDPD = -UTD*DSIN(P4) + UND*DCOS(P4)
cX UTDPD = UTD*DCOS(P4) + UND*DSIN(P4)
UNDPD = UNDC * DC2 - ( 0.5 * UTDC ) * DSIN(P42)
UTDPD = 0.5 * UNDC * DSIN(P42) + ( 0.5 * UTDC ) * DCOS(P42)
DUNDP = DUND * DC2 - ( 0.5 * DUTD ) * DSIN(P42)
DUTDP = O.5 * DUND * DSIN(P42) + ( 0.5 * DUTD ) * DCOS(P42)
c
c DETERMINE EFFECTIVE PROPERTIES
c
c CXX MODIFICATION TQO USE STRESS DEPENDENT DAMAGE
c GROWTH LAW
c
cX RI = RLAMBDA * DABS(UNDPD) ! RLAMBDA * UNDPD
CXX RI = RLAMBDA * DABS(UTDC) ! RLAMBDA * UTDC
CXX RLENGTH = RBETA * RL ! RBETA * RL
CXX RHO = RI * RLENGTH**2 / RAREA
CXX RHO = DMAX1( RHO, XRHO(I) )
CXX XRHO(I) = RHO
RHO = XRHO(I)
CXX
CXX
E1 = EO ! EO DEPENDS ON PLANE STRESS
E2 = EO/ ( 1.0 + 2.0*PI*RHO ) ! OR PLANE STRAIN CONDITIONS
RNU12 = RNU
RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)
G12 = GO / ( 1.0 + 2.0*PI*RHO*(GO/EO) )
c
c FORM REDUCED STIFFNESS MATRIX
c
Q11 = E1 / ( 1.0 - RNU12*RNU21 )
Q12 = RNU21 * Qi1
Q22 = E2 / ( 1.0 - RNU12*RNU21 )

Q66 G12



CXX

CXX BEGIN CXX MODIFICATIONS

CcXX

C

C CALCULATE PRINCIPAL STRESSES FOR DAMGE GROWTH LAW
(o}

SIGNN(I) = SIGNN(I) + Q22 * DUNDP

TAUNT(I) = TAUNT(I) + Q66 * DUTDP

SIGSIG = (SIGNN(I) / 2.0 )**2 + (TAUNT(I) / 2.0 )**2
RSIG = SQRT(SIGSIG)

SIGM1 = SIGNN(I)/2.0 + RSIG

SIGM2 = SIGNN(I)/2.0 - RSIG

SIGPRIN = DMAX1(SIGM1,SIGM2)

TAUMAX = RSIG

C
C CALCULATE THE VALUE OF RHO (MICRO CRACK DAMAGE)
C
RI = RLAMBDA * DABS(SIGPRIN)
RLENGTH = RBETA * RL
RHO = RI * RLENGTH**2 / RAREA
XRHD(I) = DMAX1( RHO, XRHO(I) )
C
C RECALCULATE EFFECTIVE PROPERTIES WITH UPDATED RHO
C
E1 = EO ! EO DEPENDS ON PLANE STRESS
E2 = EO/ ( 1.0 + 2.0%PI*RHO ) ! OR PLANE STRAIN CONDITIONS
RNU12 = RNU
RNU21 = RNU / ( 1.0 + 2.0*PI*RHO)
G12 = GO / ( 1.0 + 2.0*PI*RHO*(GO/EQ) )
C
C FORM REDUCED STIFFNESS MATRIX
C
Q11 = E1 / ( 1.0 - RNU12*RNU21 )
Q12 = RNU21 * Q11
Q22 = E2 / ( 1.0 - RNU12*RNU21 )
Q66 = G12
CXX
CXX END MODIFICATION FOR STRESS DEPENDENT DAMAGE GROWTH
CXX
Cc
C TRANSFORM SELECTED STIFFNESS COMPONENTS TO INTERFACIAL COORD.
C (-45 DEG)
PN4 = -PI / 4.0

QBAR11 = Q11*DCOS(PN4)**4
+ 2.0%( Q12 + 2.0*Q66 )*DSIN(PN4)**2*DCAS(PN4)**2

-

2 + Q22*DSIN(PN4)**4
QBAR12 = ( Q11 + Q22 - 4.0*Q66 )*DSIN(PN4)**2
1 *DCOS(PN4)**2
2 + Q12*( DSIN(PN4)**4 + DCOS(PN4)**4 )
QBAR22 = Q11*DSIN(PN4)**4
1 + 2.0*( Q12 + 2.0%Q66 )*DSIN(PN4)**2*DCOS(PN4)**2
2 + Q22*DCOS(PN4)**4
QBAR16 = ( Q11 - Q12 - 2.0%Q66 )*DSIN(PN4)*DCOS(PN4)**3
1 + ( Q12 - Q22 + 2.0%Q66 )*DSIN(PN4)**3*DCOS{PN4)
QBAR26 = ( Q11 - Q12 - 2.0*Q66 )*DSIN(PN4)**3*DCOS(PN4)
i + (. Q12 - Q22 + 2.0*Q66 )*DSIN(PN4)*DCOS(PN4)=**3

QBARGE = ( Q11 + Q22
- 2.0*(Q12+Q66) )*DSIN(PN4 ) **2+DCOS(PN4 ) **2
2 + Q66*( DSIN(PN4)**4 + DCOS(PN4)**a )

p—y

o]
C INVERT TRANSFORMED REDUCED STIFFNESS MATRIX TO DETERMINE
C S22 AND S66 OF MATERIAL, THEN TAKE RECIPROCAL TO GET

C ED22 AND GD12

C

CX S22 = ( QBAR11 * QBARE6 - QBAR16**2 ) /

CX 1 ( QBAR11 * QBAR22 * QBARG66 - QBAR12**2 * QBARGG -

CX 2 QBAR11 * QBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -
CX 3 QBAR16**2 * QBAR22 )

CX S66 = ( QBAR11 * QBAR22 - QBAR12**2 ) /

cX 1 ( QBAR11 * QBAR22 * QBARG6 - QBAR12**2 * QBAREG -
cX 2 QBAR11 * QBAR26**2 + 2.0 * QBAR12 * QBAR16 * QBAR26 -
cX 3 QBAR16**2 * QBAR22 )
cX ED22 = 1.0 / S22
cx GD66 = 1.0 / S66
FN(I) = FN(I) - QBAR22 * AREA * ( DUND )
FT(I) = FT(I) - 2.0 * QBARG6 * AREA * ( 0.5 * DUTD )
cX ADJUST NORMAL FORCE FOR COMPRESSIVE LOADS
IF ( UND .LT. 0.0 ) THEN
cY FN(I) = FN(I) -10.0E2 * QBAR22 * ( UND )

FN(I) = FN(I) - QBAR22 * AREA * ( DUND )



Ccy

ENDIF
cY CHECK FOR PRIOR FAILURE
IF ( INTDF(I) .GT. O ) THEN
FT(I) = 0.0
IF ( UND .GT. 0.0 ) THEN
FN(I) = 0.0
ENDIF
ENDIF
cX
cX
CYX WRITE(6,4567) ED22,GD66
CYX 4567 FORMAT(10X,’'ED22= ‘,E15.6,5X,‘'GD66= ’,E15.6)
cX
CcX
C
ENDIF
(o

CCCCCCCCCCCCCCLLCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
c
c CALCULATE INCREMENT OF WORK OF SEPARATION
c
IF ( UND .LT. 0.0 ) THEN
DWORKN = 0.0
ELSE
DWORKN = DABS(FN(1)) * DABS(DUN)
ENDIF
DWORKT = DABS(FT(I)) * DABS(DUT)
IF ( INTDF(I) .GT. O ) THEN

DWORKN = 0.0
DWORKT = 0.0
ENDIF
WORKN(I) = WORKN(I) + DWORKN
WORKT(I) = WORKT(I) + DWORKT
C
ELSE ! INTERFACE SEPARATED
C

IF ( UND .LT. 0.0 ) THEN
Q22 = E0 / ( 1.0 - RNU*RNU )
cY FN(I) = FN(I) - 10.0E2 * Q22 * AREA * ( DUND )
FN(I) = FN(I) -Q22 * AREA * ( DUND )

cy
FT(I) = 0.0
ELSE
FN(I) = 0.0
FT(1) = 0.0
ENDIF
DWORKN = 0.0
DWORKT = 0.0
WORKN(I) = WORKN(I) + DWORKN
WORKT(I) = WORKT(I) + DWORKT
ENDIF
CX
CX

CHAFarkkm bk kAR Rk Ak END KACHANOV 'S MODEL %% % % % % % o o o o ook o ok o e ok ok ok ok ok
CX
713 CONTINUE
CX FORCE CALCULATION ELEMENT
CX
IF ( ITFLAG .EQ. 3 ) THEN
Q22 = EO / ( 1.0 - RNU*RNU )

Q66 = GO
FN(I) = -Q22 * AREA * { UND )
FT(I) = -2.0 * Q66 * AREA * ( 0.5 * UTD )
ENDIF
CX
CX
cy oLo
Ccy FINT(1)=FN(I)*DCOS(PHIAV)-FT(I)*DSIN(PHIAV)
cy FINT(2)=FN(I)*DSIN(PHIAV)+FT(I)*DCOS(PHIAV)
cy FINT(3)=—FN(I)‘DCOS(PHIAV)+FT(I)*DSIN(PHIAV)
Ccy FINT(4)=-FN(I)*DSIN(PHIAV)-FT(I)*DCOS(PHIAV)
cY NEW
RTHETAI = -1.0 * THETAI
FINT(1) = -FN(I)*DSIN(RTHETAI) + FT(I)*DCOS(RTHETAI)
FINT(2) = FN(I)*DCOS(RTHETAI) + FT(I)*DSIN(RTHETAI)
FINT(3) = -FINT(1)
FINT(4) = -FINT(2)
cy

cy



IF(IDUMP.LT.3) GO TO 3398
WRITE(6,2007) (FINT(K),K=1,4)

2007 FORMAT(10X, 'FINT = * 4E15.7,/)
3398 CONTINUE

CcX
CX

FG(N1X)=FG(N1X)~FINT(1)
FG(N1Y)=FG(N1Y)-FINT(2)
FG(N2X)=FG(N2X)-FINT(3)
FG(N2Y)=FG(N2Y)-FINT(4)
I1=11+1
I12=12+1

4544 CONTINUE
4600 CONTINUE
9189 CONTINUE

DO 7777 J=1,NTOT

7777 FG(J)=FG(J)+FGL(U)

C

C APPLY DISPLACEMENT BOUNDARY CONDITIONS

C

IF(IDUMP.LT.4) GO TO 521
WRITE(6,5003) ITER,NDBC,MAXBW

5003 FORMAT(S5X,’ITER=‘,I13,’ NDBC=‘,I3,’ MAXBW=‘,13,/)

WRITE(6,5004) (DINC(I),I=1,NDBC)

5004 FORMAT(5X,‘DINC = ‘,3E15.7)

WRITE(6,5005) (NDOF(I1),I=1,NDBC)

5005 FORMAT(5X, 'NDOF = ‘,10Q0I5)

WRITE(6,7013)

7013 FORMAT(//.20X, 'GLOBAL LINEAR STIFFNESS MATRIX’,//)

WRITE(6,7040) ((KGS(II,Jd),Jdd=1,MAXBW),II=1,NTOT)

7040 FORMAT(4(5X,E15.7) )
521 CONTINUE

C

IF(NDBC.EQ.O) GO TO 44
IF(ITER.GT.1) GO TO 43
DO 8998 K=1,NDBC

C SUBTRACT DISPLACEMENTS ABOVE DIAGONAL

o

C

JU=NDOF (K)
11=1
97 IF(JJ.GT.MAXBW) GO TO 85
IF ( IDUMP .LT. 3 ) GO TO 2345
WRITE(6,2344) FG(II),KGS(II,JJ),DPMINC(K)
2344 FORMAT(/,’A-BEFORE: FG(II)= ’,E14.7,5X, ‘KGS(II,Jd)=
1 SX, 'DPMINC(K)= /' ,E14.7,/)
2345 CONTINUE
FG(II) = FG(II) - KGS(II,JJ) * DPMINC(K)
IF ( IDUMP .LT. 3 ) GO TO 2347
WRITE(6,2346) FG(II),KGS(II,JJ),DPMINC(K)

2346 FORMAT(/,’A-AFTER: FG(II)= ’,E14.7,5X,'KGS(II,UJ)=
1 5X,‘DPMINC(K)= ' ,E14.7,/)

2347 CONTINUE

95 II=II+A

98 Ju=dJdud-1

IF(JJU.GT.1) GO TO 97

C SUBTRACT DISPLACEMENTS BELOW DIAGONAL

C

JU=NDOF (K)
II=NDOF(K)+1
LL=2
IF ( IDUMP .LT. 3 ) GO TO 3345
WRITE(6,3344) FG(II),KGS(JJ,LL),DPMINC(K)
3344 FORMAT(/,'B-BEFORE: FG(II)= ’,E14.7,5X, ‘KGS(II,JU)=
1 5X,‘DPMINC(K)= ‘,E14.7,/)
3345 CONTINUE
96 FG(II) = FG(II) - KGS(JU,LL) * DPMINC(K)
IF ( IDUMP .LT. 3 ) GO TO 3347
WRITE(6,3346) FG(II),KGS(UJ,LL),DPMINC(K)

3346 FORMAT(/,’B-AFTER: FG(II)= ‘ ,E14.7,5X, 'KGS(II,JJd)=
1 5X, ‘DPMINC(K)= ‘,E14.7,/)
3347 CONTINUE
II=11I+1
LL=LL+1

IF(II.GT.NTOT) GO TO 9999
IF(LL.LE.MAXBW) GO TO 96

9999 CONTINUE

DO 9994 K=1,NDBC
JU=NDOF (K)

9994 FG(JU)=DPMINC(K)

GO TO 44
43 DO 99398 K=1,NDOBC

‘L,E14.7,

‘VE14.7,

‘,E14.7,

‘' E14.7,
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FG(NDOF(K))=0.

CONTINUE

IF(IDUMP.LT.3) GO TO 6666
IRIGHT=1

IF(IRIGHT.NE.1) GO TO 6666
WRITE(6,2014)

FORMAT(//,20X, 'RIGHT HAND SIDE MATRIX’,//)
WRITE(6,2015) (FG(I),I=1,NTOT)
FORMAT(30X,E15.7)

CONTINUE

RETURN

END
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SUBROUTINE BANDWD

THIS ROUTINE DETERMINES THE BAND WIDTH OF THE STIFFNESS
MATRIX
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SUBROUTINE BANWD(MODEL,NELEMS,NCON,NDOFPN, MAXBW, IDUMP)
DIMENSION NCON(1500,3)

MAXBW=0

DO 10 JU=1,NELEMS

KA=NCON(J, 1)

KB=NCON(J,2)

KC=NCON(J,3)

IF(MODEL.LE.3) GOTO 2

KAA=NCON(J, 4)

KBB=NCON(J,5)

KCC=NCON(J,6)

KAMB=TABS(KA-KB)

KAMC=IABS(KA-KC)

KBMC=IABS(KB-KC)

IF(MODEL.LE.3) GOTO 3

KAMAA=IABS(KA-KAA)

KAMBB=IABS(KA-KBB)

KAMCC=IABS (KA-KCC)

KBMAA=IABS(KB-KAA)

KBMBB=I1ABS(KB-KBB)

KBMCC=IABS(KB-KCC)

KCMAA=IABS(KC-KAA)

KCMBB=1ABS(KC-KBB)

KCMCC=1ABS(KC-KCC)
ICK=(MAXO(KAMB, KAMC, KBMC )+ 1) *NDOFPN
IF(MODEL.LT.4) GO TO 1430
ICK=(MAXO(KAMB, KAMC,KBMC ,KAMAA ,KAMBB , KAMCC , KBMAA ,
* KBMBB , KBMCC ,KCMAA , KCMBB , KCMCC )+ 1 ) *NDOFPN
CONTINUE

IF(MAXBW.LT.ICK) MAXBW=ICK

CONTINUE

IF(IDUMP.LT.2) GOTO 15

WRITE(6,20) MAXBW

FORMAT(/10X, ‘THE MAXIMUM SEMI-BANDWIDTH IS‘,I3)
CONTINUE

RETURN

END
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SUBROUTINE BANDSOL
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SYMMETRIC BAND MATRIX EQUATION SOLVER. GAUSS-DOOLITTLE
METHOD SOLVES EQUATIONS (AK)(X)=R
AK = SYMMETRIC BANDED COEFFICIENT MATRIX STORED IN
COMPACTED FORM
R = RIGHT HAND SIDE MATRIX
NEQ = NUMBER OF EQUATIONS BEING SOLVED
IBAND = SEMI-BANDWIDTH OF EQUATIONS BEING SOLVED
MAXEQ = NO. OF ROWS FOR WHICH AK AND R ARE DIMENSIONED
(MAX EQUATIONS)
MAXBND = NO. OF COLUMNS FOR WHICH AK IS DIMENSIONED
(MAX BANDWIDTH)
KKK = 1 TRIANGULARIZES THE SYMMETRIC, BANDED MATRIX AK
AND OVERWRITES IT INTO AK (HENCE, AK IS
DESTROYED AND IS REPLACED BY ITS TRIANGULARIZED
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110
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320
400

FORM). NOTE THAT R IS NOT NEEDED.
OBTAINS SOLUTION TO (AK)(X)=R FOR A PARTICULAR
RIGHT-HAND-SIDE R (ASSUMES THAT TRIANGULARIZED
FORM OF AK IS STORED IN AK). SOLUTION IS
RETURNED IN R.
KKK = 3 PERFORMS BOTH FORWARD ELIMINATION AND BACK
SUBSTITUTION AT THE SAME TIME
NOTE---FOR SOLUTION OF SEVERAL SETS OF EQUATIONS WITH SAME
LEFT SIDE (AK) BUT DIFFERENT RIGHT SIDES (R), THE
FIRST SOLUTION SHOULD BE OBTAINED WITH KKK=3 (OR
KKK=1 AND KKK=2). SUBSEQUENT SOLUTIONS WITH NEW
RIGHT-HAND-SIDES REQUIRES ONLY CALLING BANSOL WITH
KKK=2 (TRIANGULARIZED AK AND NEW R NEEDED).
WARNING--THIS PROGRAMS ASSUMES THAT AK IS POSITIVE
DEFINITE AND DIAGONALLY DOMINANT. NO PIVOTING OR
CHECKING FOR ZERO DIAGONAL ELEMENTS IS PERFORMED.
SEE W.E. HAISLER IF YOU HAVE PROBLEMS

KKK

n
[+

SUBROUTINE BANSOL(AK,R,NEQ, IBAND,MAXEQ,MAXBND, KKK )
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AK(MAXEQ,MAXBND),R(MAXEQ)
NRS = NEQ - 1t
NR = NEQ
GO TO (100,200, 100), KKK
PERFORM TRIANGULARIZATION OF AK
DO 120 N=1,NRS
M=N-1
MR = MINO(IBAND,NR-M)
PIVOT = AK(N,1)
DO 120 L=2,MR
CP = AK(N,L)/PIVOT

I =M+ L

J =0

D0 110 K=L,MR

J = Jd+ 1

AK(1,J) AK(I,J) - CP*AK(N,K)

AK(N,L) = cP
IF (KKK.EQ.1) RETURN

FORWARD ELIMINATION OF R
DO 220 N=1,NRS

M=N-1
MR = MINO(IBAND,NR-M)
CP = R(N)

R(N) = CP/AK(N,1)

DO 220 L=2,MR

I =M+ L

R(I) = R(I) - AK(N,L)*CP
BACKWARD SUBSTITUTION TO OBTAIN SOLUTION

R(NR) = R(NR)}/AK(NR, 1)

DO 320 I=1,NRS

NR - I

N - 1

MR = MINO(IBAND,NR-M)

DO 320 K=2,MR

N =
M =

L =M+K
R(N) = R(N) - AK(N,K)*R(L)
RETURN

END
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SUBROUTINE ASEMBL
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SUBROUTINE ASEMBL(AK,BK,NPE,NNCON,NDOFPN,I1)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 AK(2400,600),BK(6,6)

DIMENSION NNCON( 1500, 3)

———————————————————— > FIRST THE ROWS

DO 10 JJ = 1, NPE

NROW = ( NNCON(II,JJ) - 1 )*NDOFPN
DO 10 U = 1, NDOFPN

NROW = NROW + 1

I = { Jd-1 )*NDOFPN + J

———————————————————— > THEN THE COLUMNS

DO 10 KK = 1, NPE

NCOLB = ( NNCON(II,KK) - 1 )*NDOFPN
DO 10 K = 1, NDOFPN

L = ( KK-1 )*NDOFPN + K
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NCOL = NCOLB + K + 1 - NROW

________________ > DO NOT STORE BELOW DIAGONAL

IF ( NCOL .LE. O ) GD TO 10
AK(NROW,NCOL ) =AK(NROW,NCOL }+BK(I,L)
CONTINUE

RETURN

END
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SUBROUTINE STRESS

THIS SUBROUTINE CALCULATES STRESSES AND STRAINS
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SUBROUTINE STRESS(NODE,DS,DE,DELTAQ)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 B(3,6),DET(1500,3),0ST(1500,4),DELTAQ(2400)

REAL*8 DE(1500,3),DS5(1500,4),C(3,3),T(1500),A1(1200),A2(1200)
COMMON/ELAS1/5(1500,4),E(1500,3),E0(1500,3),DSTRAN(3),

1 DSTRES(4)

COMMON/AREA7/NSTE, INCR,ITER
COMMON/PLAS1/ALPHA(4, 1500) ,EPBAR( 1500) ,SIGBAR( 1500),

1 IPLAS(1500),EPSP(1500,4),DEPSPT(1500,4),
2

DEPSP( 1500, 4)
INTEGER NODE(1500,3) ,MATSET(1500),MTYPE(1500)
COMMON/CHIST/RTOL,NN,NEL ,NF ,NDBC, IDUMP, IPRI, ISREF,
1 IEQUIT,ITEMAX,ITEMP, IINT
COMMON/AREA1/B
COMMON/AREAS /T ,MATSET ,MTYPE
COMMON/AREAG/A1,A2
COMMON/AREA10/DST ,DET
COMMON/HOMOG/SIG1AV ,DEBAR1 1
VOLUME=0.
SIG1AV=0.
DO 8999 I=1,NEL

C CALCULATE STRAINS

83

450
6003

451

452

453

454
455

94

99399

CALL SHAPE(I,IDUMP,AREA)
N1=NODE(I,1)

N2=NODE(1I,2)

N3=NODE(1I,3)

Q1=DELTAQ(2*N1-1)

Q2=DELTAQ(2*N1)

Q3=DELTAQ(2*N2-1)

Q4=DELTAQ(2*N2)

Q5=DELTAQ(2*N3-1)

Q6=DELTAQ(2*N3)
DE(I,1)=B(1,1)*Q1+B(1,3)*Q3+B(1,5)*Q5
DE(I,2)=B(2,2)*Q2+B(2,4)*Q4+B(2,6)*Q6
DE(I,3)=B(3,1)*Q1+B(3,2)*Q2+B(3,3)*Q3+B(3,4)*Q4+B(3,5)*
1 Q5+B(3,6)*Q6

DO 93 J=1,3

E(1,J)=E(I,J) + DE(I,J)
DET(I,J)=DET(I,J)+DE(I,J)
IF(MTYPE(I).EQ.1) GO TO 451
IF(MTYPE(I).EQ.2) GO TO 452
IF(MTYPE(I).EQ.3) GO TO 453
IF(MTYPE(I).EQ.4) GO TO 454
WRITE(6,6003)

FORMAT (10X, ‘MATERIAL TYPE NOT IN CURRENT LIBRARY’,/)
sTOP

CALL ELAS20(I,C,DS,MATSET(I))

GO TO 455

CALL PLAS2D(I,C,DS,0,MATSET(I))

GO TO 455

CALL VPLAS2D(I,C,DS,O0,MATSET(I))
GO TO 455

GO TO 450

CONTINUE

DO 94 J=1,4
EPSP(I,JU)=EPSP(I,J)+DEPSP(I,U)
S(I,J)=S(I,d)+DS(I,U)
DEPSPT(1,J)=DEPSPT(I,J)+DEPSP(I,J)
DST(I,J)=DST(1,J)+DS(1,U)
VOLUME=VOLUME+AREA*T (1)
SIG1AV=SIG1AV+S(I,1)*AREA*T(I)
CONTINUE

SIG1AV=SIG1AV/VOLUME

RETURN



END
C
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C SUBROUTINE PLAS2D
[

C*l‘l******************t******t**tt*t***t**‘******t************

THIS IS A CONSTITUTIVE PACKAGE FOR RATE INDEPENDENT

CLASSICAL PLASTICITY...

THIS PROGRAM DRIVES AN INCREMENTAL CONSTITUTIVE ROUTINE

IN THE FORM DS=(C)DEC THIS ROUTINE USES RATE INDEPENDENT
INCREMENTAL PLASTICITY THEORY

TO DETERMINE THE STRESS INCREMENT FOR A GIVEN STRAIN INCREMENT
OF A 2-D MATERIAL POINT UNDER PLANE STRAIN CONDITIONS

OO00O0O0O00O0O0O0

SUBROUTINE PLAS2D(J,C,DS,IPC,MATNG)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION STRESS(4),STRAIN(3),SG(4),DDEPSP(4),
1 DFDS(6) ,DDFDS(6),DEPSE(3),.DSG(4),S0LD(4),
2 EOLD(3)
DIMENSION C(3,3),DST(1500,4),DS(1500,4),DET( 1500, 3)
COMMON/ELAS1/S(1500,4),E(1500,3),E0(1500,3),DSTRAN(3),
1 DSTRES(4)
COMMON/ELAS2/EM1(4),EM2(4),VNU(4),G12(4),Y1(4),Y2(4).Y(4),
1 EM(4)
COMMON/PLAS1/ALPHA(4, 1500) ,EPBAR( 1500), SIGBAR( 1500),
1 IPLAS(1500),EPSP(1500,4) ,DEPSPT(1500,4),
2 DEPSP(1500,4)
COMMON/PLAS2/5X(10,4),EX(10,4) ,EPX(10,4),
1 SP(10,4),DEPSAL,BETA
COMMON/BB/NUNIAX(4),IDUMP2, ISUB
COMMON/AREA10/DST ,DET
COMMON/AREA7/NSTE, INCR, ITER
cX EMI 1=EM1(MATNO)
cX EMI2=EM2{MATNO)
cX VNUI 12=VNU(MATNG)
cX VNUI21=VNUI {2*EMI2/EMI1
cX RG12=G12(MATNO)
cX YI1=Y1(MATNO)
cX YI2=Y2(MATNO)
EMI=EM(MATNO)
VNUI=VNU(MATNO)
YI=Y(MATNO)
DO 11 1I=1,3
DEPSP(J,I)=0.
STRESS(I)=S(J,1)
STRAIN(I)=EO(J.I)
DSTRAN(I)=E(J,I)-EO(U,1)
11 CONTINUE
DEPSP(J,4)=0.
STRESS(4)=S(J,4)
C1=EMI/(1.+VNUI)
C2=C1/(1.-2.*VNUI)
D11=C2*(1.-VNUI)
D12=VNUI*C2
D44=C1/2.
DSG(1)=D11*DSTRAN( 1)+D12*DSTRAN(2)
DSG(2)=D12*DSTRAN( 1)+D11*DSTRAN(2)
DSG(3)=D44*DSTRAN(3)
DSG(4)=D12*(DSTRAN(1)+DSTRAN(2))
DO 10 I=1,4
10 SG(I)=STRESS(I)+DSG(I)
F=.5%((SG(1)-ALPHA(1,U)-SG(2)+ALPHA(2,U))**2+(SG(2)~
1 ALPHA(2,J)-SG(4)+ALPHA(4,U))**2
2 +(SG(4)-ALPHA(4,J)-SG(1)+ALPHA(1,d))**2+6_ *(SG(3)-
3 ALPHA(3,J))**2)-SIGBAR(U)**2
IF(DABS(F).LT.10.0) F=0.0
IDUMP3=0
IF(IDUMP3.EQ.0) GO TO 6004
WRITE(G,6000)
6000 FORMAT(‘ “,/.3X,’STRESSES TO PLAS2D ARE’,3X,’STRAINS‘,3X,
1 STRAIN INCREMENTS’,//)
DO 6001 I1=1,3
WRITE(6,6002)S(J,I),E(J,I),DSTRAN(I)
6002 FORMAT(’ ’,3X,3(E13.6,3X))
6001 CONTINUE
6004 CONTINUE
IDUMP4=0



6003
6005

20

30

2000

3000

3001
12

40

4020

500

50

1000
1001

400

3030
3090

3031
3032

1002

IF(IDUMP4 .EQ.0) GO TO 6005
WRITE(6,6003) SIGBAR(U).F

FORMAT(’ *,/,3X,’'SIGBAR=',£13.6,3X,"F=’ ,€13.6,/)
CONTINUE

IF(F) 20,30,40

IPLAS(J)=1

GO TO 2000

IPLAS(J)=2

DO 3000 1=1,4

DSTRES(I)=DSG(I)

DS(J,I)=DSTRES(I)
STRESS(I)=STRESS(I)+DSTRES(I)

DO 3001 I=1,3
STRAIN(I)=STRAIN(I)+DSTRAN(I)
EO(J,I)=E(J,I)

CONTINUE

c(1,1)=D11

c(1,2)=D12

€(1,3)=0.0

c(2,1)=C(1,2)

c(2,2)=C(1,1)

€(2,3)=0.0

€(3,1)=0.0

c(3,2)=0.0

Cc(3,3)=D44

RETURN

CONTINUE

DO 4020 1=1,3

SOLD(I)=STRESS(I)

EOLD(I)=STRAIN(I)

SOLD(4)=STRESS(4)

IF(IPLAS(J).GT.1) GO TO 1000
SMA1=STRESS(1)-ALPHA(1,J)
SMA2=STRESS(2)-ALPHA(2,J)
SMA3=STRESS(3)-ALPHA(3,J)
SMA4=STRESS(4)-ALPHA(4,U)

A=2. *DSG( 1)**2+2 *DSG(2)**2-2 *DSG(1)*DSG(2)
1 +6.*DSG(3)**242 *DSG(4)**2
2 -2.*DSG(2)*DSG(4)-2.*DSG(1)*DSG(4)
B=4.*SMA1*DSG( 1)+4.*SMA2*DSG(2)+4.*SMA4*DSG(4)
1 -2.*SMA2*DSG(1)-2.*SMA4*DSG(1)
2 -2.*SMA1*DSG(2)-2.*SMA4*DSG(2)
3 -2.*SMA1*DSG(4)-2.*SMA2*DSG(4)
4 +12.*SMA3*DSG(3)

CC=2 . *SMA{*%2+2 *SMA2**2+2  *SMAQ**2

1 ~2.*SMA{*SMA2-2 . *SMA1*SMA4
2 -2.%SMA2*SMA4+6 . *SMA3**2
3 -2.*SIGBAR(U)**2

ROOT=B**2-4  *A*CC
IF(ROOT.LE.0.0) ROOT=0.0
ZETA=(-B+DSQRT(ROOT))/2./A

DO 500 I=1,3

STRESS(I)=STRESS(I)+ZETA*DSG(I)
STRAIN(I)=STRAIN(I)+ZETA*DSTRAN(I)
STRESS(4)=STRESS(4)+ZETA*DSG(4)

DO 50 I=1,3

DSTRAN(I)=(1.-ZETA)*DSTRAN(I)

GO TO 1001

ZETA=0.

CONTINUE

IF(ISUB.NE.O) GO TO 3030
DE=(4./3.*(DSTRAN(1)**2+DSTRAN(2)**2+DSTRAN( 1) *DSTRAN(2)
1 +DSTRAN(3)*%2))** 5

M=DE/DEPSAL+. 1

IF(M.EQ.O) M=t

DO 400 I=1,3

DSTRAN(I)=DSTRAN(I)/M

GO TO 3080

M=1

CONTINUE

NPSUB=1

IF(NPSUB.EQ.1) GO TO 3032

WRITE (6,3031) M

FORMAT(’ *,//.3X,’NO. OF SUBINCREMENTS = “,13,//)
CONTINUE

DO 5000 NSUB=1,M

Id=1

IF(EPBAR(J).LE.(EPX(IJ,MATNGO)-.0000002)) GO TO 1010
IF(1J.GT.NUNIAX(MATNG)) GO TO 1003

IJ=1J+1



GO TO 1002

1003 WRITE(6,7001)

7001 FORMAT(10X,’STOP - EPBAR IS TOO BIG’)
WRITE(6,7019) MATNO, U, EPBAR(J)

7019 FORMAT( 10X, MATERIAL NO. ’,13,
1 2X, ELEMENT NO. ’,13,/,10X,
2 ‘EPBAR = ‘' ,E15.7,/)
sToP

1010 IF(IJU.EQ.1) Iu=2
HPRIME=2 /3. *(SP(IJ,MATNO)-SP(IJ-1,MATNO))
1 /(EPX(I1J,MATNO)-EPX(IJ-1,MATNO))
DFDS(1)=2.*(STRESS(1)-ALPHA(1,J))-STRESS(2)+ALPHA(2,U)
1 -STRESS(4)+ALPHA(4,J)
DFDS(2)=2.*(STRESS(2)-ALPHA(2,J))-STRESS(1)+ALPHA(1,J)
1 -STRESS(4)+ALPHA(4,U)
DFDS(3)=2.*(STRESS(4)-ALPHA(4,J))-STRESS(1)+ALPHA(1,J)
1 ~STRESS(2)+ALPHA(2,V)
DFDS(4)=0.
DFDS(5)=0.
DFDS(6)=6.*(STRESS(3)-ALPHA(3,J))
DDFDS(1)=D11*DFDS(1)+D12*DFDS(2)+D12*DFDS(3)
DDFDS(2)=D12*DFDS(1)+D11*DFDS(2)+D12*DFDS(3)
DDFDS(3)=D12*DFDS(1)+D12*DFDS(2)+D11*DFDS(3)
DDFDS(4)=D44*DFDS(4)
DDFDS(5)=D44*DFDS(5)
DDFDS(6)=D44*DFDS(6)
SDFDS=DFDS(1)**2+DFDS(2)**2+DFDS(3)**2+DFDS(4) **2+DFDS(5) **2

1 +DFDS(6)**2
DFDDF=DDFDS(1)*DFDS(1)+DDFDS(2)*DFDS(2)+DDFDS(3)*DFDS(3)
1 +DDFDS(4)*DFDS(4)+DDFDS(5)*DFDS(5S)+DDFDS(6)*DFDS(6)

DENOM=HPRIME *SDFDS+DFDDF
C11=D11-DDFDS( 1) *DDFDS( 1) /DENGM

C12=D12-DDFDS( 1)*DDFDS(2)/DENOM
C13=D12-DDFDS(1)*DDFDS(3)/DENOM
C14=-DDFDS(1)*DDFDS(4)/DENOM
C15=-DDFDS( 1) *DDFDS(5)/DENOM
C16=-DDFDS(1)*DDFDS(6)/DENOM
€22=D11-DDFDS(2)**2/DENOM
C23=D12~-DDFDS(2)*DDFDS(3)/DENOM
C24=-DDFDS(2)*DDFDS(4) /DENOM
C25=-DDFDS(2)*DDFDS(5)/DENOM
C26=-DDFDS(2)*DDFDS(6)/DENOM
C33=D11-DDFDS(3)*=*2/DENOM
C34=-DDFDS(3)*DDFDS(4)/DENOM
C35=-DDFDS(3)*DDFDS(5)/DENOM
C36=-DDFDS(3)*DDFDS(6)/DENOM
C44=D44-DDFDS(4)**2/DENOM
C45=-DDFDS(4)*DDFDS(5)/DENOM
C46=-DDFDS(4)*DDFDS(6)/DENOM
C55=D44-DDFDS(5)**2/DENOM
C56=-DDFDS(5)*DDFDS(6)/DENGM
C66=D44-DDFDS(6)**2/DENOM

c(1,1)=C11

c(1,2)=C12

c(1,3)=C1i6

c(2,1)=C(1,2)

c(2,2)=Cc22

Cc(2,3)=C26

€(3,1)=Cc(1,3)

€(3,2)=C(2,3)

C€(3,3)=Cé6

IF(IPC.EQ.1) RETURN
DSTRES(1)=C11*DSTRAN(1)+C12*DSTRAN(2)+C16*DSTRAN(3)
DSTRES(2)=C12*DSTRAN( 1)+C22*DSTRAN(2)+C26*DSTRAN(3)
DSTRES(3)=C16*DSTRAN( 1)+C26*DSTRAN(2)+C66*DSTRAN(3)
DSTRES(4)=C13*DSTRAN(1)+C23*DSTRAN(2)+C36*DSTRAN(3)
DDEPSP(1)=DSTRAN( 1)-DSTRES(1)/EMI+VNUI*DSTRES(2)/EMI

1 +VNUI*DSTRES(4)/EMI
DDEPSP(2)=DSTRAN(2)+VNUI*DSTRES(1)/EMI-DSTRES(2)/EMI
1 +VNUI*DSTRES(4)/EMI

DDEPSP(3)=DSTRAN(3)-2.*(1.+VNUI)*DSTRES(3)/EMI
DDEPSP(4)=0.+VNUI*(DSTRES(1)+DSTRES(2))/EMI

1 -DSTRES(4)/EMI

DO 1050 1=1,4

DEPSP(J, 1)=DEPSP(J,I1)+DDEPSP(I)

1050 DEPSE(I)=DSTRAN(I)-DEPSP(U.I)

DEPBAR=(2./9.*((DDEPSP(1)-DDEPSP(2))**2

1 +(DDEPSP(2)-DDEPSP(4))**2+(DDEPSP(4)-DDEPSP(1))**2
2 +6 . *(DDEPSP(3)/2.)**2))**0.5
EPBAR(J)=EPBAR(J)+DEPBAR



IEP=0
IF(IEP.NE.1) GO TO 1051
WRITE(6, 1052)EPBAR(J) ,DEPBAR,DEPSP(JU, 1) ,DEPSP(J,2)

1 ,DEPSP(J,3) .DEPSP(J,4)

1052 FORMAT(’ ' ,3X,’EPBAR=’,E13.6,3X, 'DEPBAR=',E13.6,3X,
1 ‘DEPSP(1)=’,£13.6,3X, ‘DEPSP(2)=",E13.6, 3X,
2 ‘DEPSP(3)=',E13.6,/)

1051 CONTINUE
SMA1=STRESS(1)-ALPHA(1,V)
SMA2=STRESS(2)-ALPHA(2,J)
SMA3=STRESS(3)-ALPHA(3,J)
SMA4=STRESS(4)-ALPHA(4,VU)
DEN=DFDS(1)*SMA1+DFDS(2)*SMA2+DFDS(3)*SMA4
1 +DFDS(6)*SMA3
SIGOLD=SIGBAR(J)
DO 1060 I=1,3
STRESS(I)=STRESS(I)+DSTRES(I)
1060 STRAIN(I)=DSTRAN(I)+STRAIN(I)
STRESS(4)=STRESS(4)+DSTRES(4)
I=1
2002 IF(EPBAR(J).LE.EPX(I,MATNO)) GO TO 2010
IF(I.GT.NUNIAX(MATNO)) GO TO 2003
I=I+1
GO TO 2002
2003 WRITE(6,7002)
7002 FORMAT (10X, ‘STOP - EPBAR EXCEEDS LAST POINT ON CURVE’)
WRITE(6,7020) MATNO,J,EPBAR(J)
7020 FORMAT(10X, ‘MATERIAL NO. ‘,13,
1 2X, “ELEMENT NO. /,13,/.10X,
2 ‘EPBAR = ‘,E15.7.,/)

STOP

2010 SIGBAR(J)=SP(I-1,MATNO)+(EPBAR(J)-EPX(I-1,MATNO))
1 *(SP(I,MATNO)-SP(I-1,MATNO))/(EPX{I,MATNO)
2 -EPX(I-1,MATNO))

DSIGB=SIGBAR(J)-SIGOLD
DMU=(DFDS(1)*DSTRES(1)+DFDS(2)*DSTRES(2)+DFDS(3)*DSTRES(4)

1 +DFDS(6)*DSTRES(3)

2 -2.*SIGOLD*DSIGB)/DEN
ALPHA(1,U)=ALPHA(1,J)+DMU*SMA 1
ALPHA(2,U)=ALPHA(2,J)+DMU*SMA2
ALPHA(3,J)=ALPHA(3,J)+DMU*SMA3
ALPHA(4,U)=ALPHA(4,U)+DMU*SMA4

S000 CONTINUE
DO 5001 I=1,4
DSTRES(I)=STRESS(I)-SOLD(I)
5001 DS{(J,I)=DSTRES(I)
DO 5002 I=1,3
EO(J,I)=E(Y,I)
5002 DSTRAN(I)=STRAIN(I)-EOLD(I)
IPLAS(U)=2
RETURN
END
c
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c
C SUBROUTINE ELAS2D
c
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THIS IS A CONSTITUTIVE PACKAGE FOR ISOTROPIC
LINEAR ELASTICITY...
TO DETERMINE THE STRESS INCREMENT FOR A GIVEN STRAIN INCREMENT
OF A 2-D MATERIAL POINT
PLANE STRAIN OR
ORTHOTROPIC PLANE STRESS

OO0O0O000

SUBROUTINE ELAS20(J,C,DS,MATNO)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION STRESS(4),STRAIN(3),SG(4),

1 DSG(4),€(3,3),DS(1500,4)
COMMON/CHIST/RTOL ,NN,NEL ,NF ,NDBC, IDUMP, IPRI, ISREF,

1 IEQUIT,ITEMAX,ITEMP, IINT
COMMON/ELAS1/S(1500,4),E(1500,3),E0(1500,3) ,DSTRAN(3),

1 DSTRES(4)
COMMON/ELAS2/EM1(4) ,EM2(4),VNU(4),G12(4),Y1(4),Y2(4),Y(4),

1 EM(4)

COMMON/AREA7/NSTE, INCR, ITER
E1=EM1(MATNO)

E2=EM2(MATNO)

VNU12=VNU (MATNO)



VNU2 1=VNU12*E2/E1
RG12=G12(MATNO)
YI=Y{MATNO)
YL=Y1(MATNO)
YT=Y2(MATNO)
DD 11 I=1,3
STRESS(1)=S(J,I)
STRAIN(I)=EO(J,I)
DSTRAN(I)=E(J,I)-EO(J,1I)
11 CONTINUE
STRESS(4)=5(J,4)

CX C1=EMI/(1.+VNUI)

CX C2=C1/(1.-2.*VNUI)
CX D11=C2*(1.-VNUI)

CX D12=VNUI*C2

CX D44=C1/2.

CcX

c Plane Strain

C1=E1/(1.+VNU12)
C2=C1/(1.-2.%VNU12)
D11=C2*(1.-VNU12)
D12=VNU12*C2

D21=D12
D22=D11
D44=C1/2.
cy
c Plane Stress
cx
CcX D11=E1/(1.0-VNU12*VNU21)
CX D12=VNU21*D11
CX D22=E2/(1.0-VNU12*VNU21)
CX D21=D12
CcX D44=RG12
Cc
CX

DSG{(1)=D11*DSTRAN(1)+D12*DSTRAN(2)
DSG(2)=D21*DSTRAN( 1)+D22*DSTRAN(2)
DSG(3)=D44*DSTRAN(3)
DSG(4)=D12*(DSTRAN( 1)+DSTRAN(2))
cX DsG(4) = 0.0
DO 10 1=1,4
10 SG(I)=STRESS(I)+DSG(I)

[of
c REDUCE TRANSVERSE STIFFNESS UPON MATRIX CRACK INITIATION
[of
S1 = ( ( SG(1) - SG(2) ) / 2.0 )**2
S2 = SG(3)**2
S353 = S1 + S2
S3 = SQRT(S3S3)
SP1 = ( SG(1) + SG(2) ) / 2.0 + S3
SP2 = ( SG(1) + SG(2) ) / 2.0 - S3
SPMAX = DMAX1( SP1, SP2 )
IF ( SPMAX .GT. YL ) THEN
cX IF ( SG(1) .GT. YL ) THEN
MATNO = 3
WRITE (6,7000) J, INCR
7000 FORMAT(/, "MATRIX CRACK AT ELEMENT ‘,I5,’ DURING STEP ’,I5,/)
c
c WRITE(6,6100)
C 6100 FORMAT(’ ‘,/,3X,’STRESSES TO ELAS2D ARE’,3X, STRAINS‘,3X,
c 1 STRAIN INCREMENTS’,//)
c DO 6101 1=1,3
c WRITE(6,6102)SG(I),E(J,I),DSTRAN(I)
c 6102 FORMAT(’ ‘,3X,3(E13.6,3X))
c 6101 CONTINUE
c
ENDIF
c
o]
cx DISABLE YIELD FUNCTION
cx F=.5%((SG(1)-SG(2))**2+(SG(2)-SG(4))**2
cx 1 +(SG(4)-5G(1))**246 . *SG(3)**2)-YI**2
cXx
cx WRITE(6,6495) U

CX6495 FORMAT(//,’SG(1) - SG(4), F,YI FOR ELEMENT: ’,I5,/)

CX WRITE(6,6500) SG(1), SG(2), SG(3), SG(4),

F,YI

CX6500 FORMAT(3X,E15.4,3X,E15.4,3X,E15.4,3X.E15.4,/

CX 1 3X,E15.5,3X,E15.5/)



CX IF(DABS(F).LT.10.0) F=0.0
CcX

IF(IDUMP.LT.4) GO TO 6004
WRITE(6,6000)
6000 FORMAT(‘ ‘,/,3X,’STRESSES TO ELAS2D ARE‘,3X, ‘STRAINS’,3X,
1 *STRAIN INCREMENTS’,//)
DO 6001 1=1,3
WRITE(6,6002)S(J,I1),E(J,1),DSTRAN(I)
6002 FORMAT(’ - ,3X,3(E13.6,3X))
6001 CONTINUE
6004 CONTINUE

CX IF(IDUMP.LT.3) GO TO 6005
cX WRITE(6,6003) YI,F
CX 6003 FORMAT(‘ ‘,/,3X,‘Y = /,E13.6,3X,*F = ' E13.6,/)

6005 CONTINUE

CcX IF(F) 2000, 30,30

CX 30 WRITE(6,7009) J

CX 7009 FORMAT(10X, ELASTIC ELEMENT NO. ’,13,1X,’HAS YIELDED’,/)
CX STOP

C
C
[
C
C
c

O0O00000n

[sNeNe]

O0O0O0O0

2000 DO 3000 I=1,4
DSTRES(I)=DSG(I)
DS(J,I)=DSTRES(I)

3000 STRESS(I)=STRESS(I)+DSTRES(I)
DO 3001 I=1,3
STRAIN(I)=STRAIN(I)+DSTRAN(I)

3001 EO(J,I)=E(J,I)

12 CONTINUE
C(1,1)=D11
c(1,2)=D12
€(1,3)=0.0
c(2,1)=Cc(1,2)
Cc(2,2)=D22
C€(2,3)=0.0
€(3,1)=0.0
€(3,2)=0.0
C(3,3)=D44
RETURN
END
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SUBROUTINE VPLAS2D
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THIS IS A CONSTITUTIVE PACKAGE FOR RATE DEPENDENT
VISCOPLASTICITY USING MILLER’S MODEL

TO DETERMINE THE STRESS INCREMENT FOR A GIVEN STRAIN INCREMENT
CF A 2-D MATERIAL POINT

SUBROUTINE VPLAS20(J,C,DS,IPC,MATNO)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION STRESS(4),STRAIN(3),DFDS(6),DDFDS(6),

1 SOLD(4),EOLD(3)

DIMENSION C(3,3).DST(1500,4),DS(1500,4),DET(1500,3)
COMMON/CHIST/RTOL,NN,NEL,NF,NDBC, IDUMP, IPRI, ISREF,

1 IEQUIT,ITEMAX, ITEMP, IINT
COMMON/ELAS1/5(1500,4),E(1500,3),E0(1500,3),DSTRAN(3),

1 DSTRES(4)
COMMON/ELAS2/EM1(4),EM2(4),VNU(4),G12(4),Y1(4),.Y2(4),Y(4),
1 EM(4)
COMMON/PLAS1/ALPHA(4, 1500),EPBAR(1500), SIGBAR( 1500),

1 IPLAS(1500) ,EPSP(1500,4),DEPSPT(1500,4),

2 DEPSP(1500,4)

COMMON/VPLAS1/DTIME ,DEVPAL
COMMON/VPLAS2/RN,H1,H2,AA1,AA2,C2,D0,B1, TEMP, TMELT, QS
COMMON/BB/NUNIAX(4), IDUMP2, ISUB
COMMON/AREA10/DST,DET

COMMON/AREA7/NSTE, INCR, ITER

RECALL DRAG STRESS D FROM SIGBAR ARRAY
D=SIGBAR(J)

INITIALIZE PLASTIC STRAIN RATE AND STRESS RATE

FOR CALCULATION OF HPRIME FIRST TIME THROUGH

SUBINCREMENTATION LOOP

EPSPDOT 1=DEPSP(J, 1)/DTIME
EPSPDOT2=DEPSP(J,2)/DTIME



EPSPDOT3=DEPSP(J,3)/DTIME
EPSPDOT4=DEPSP(J,4)/DTIME
SIGDOT1=DS(J, 1)/DTIME
SI1GDOT2=DS(J,2)/DTIME
SIGDOT3=DS(J,3)/DTIME
SIGDOT4=DS(J,4)/DTIME

c

C INITIALIZE SUBROUTINE STRESSES AND STRAINS

c
DO 11 I1=1,3
DEPSP(U,1)=0.
STRESS(1)=S(J,1)
STRAIN(I)=EQ(U,1)
DSTRAN(I)=E(J,I)-EO(J,I)

11 CONTINUE
STRESS(4)=5(J,4)
DEPSP(J,4)=0.

DO 4020 1=1,3
SOLD(I)=STRESS(I)

4020 EOLD(I)=STRAIN(I)

SOLD(4)=STRESS(4)

c
C CALCULATE ELASTIC MODULUS MATRIX
c
EMI=EM(MATNO)
VNUI=VNU{(MATNO)
YI=Y(MATNO)
CC1=EMI/(1.+VNUI)
CC2=CC1/(1.-2.*VYNUI)
D11=CC2*(1.-VNUI)
D12=VNUI*CC2
D44=CC1/2.
c
C SUBINCREMENTATION LOOP
c

DE=(4./3.*(DSTRAN(1)**2+DSTRAN(2)**2+DSTRAN( 1 }*DSTRAN(2)
i +DSTRAN(3)**2))** 5§
M=DE/DEVPAL+. 1
IF(M.EQ.0) M=1
DO 400 1=1,3
400 DSTRAN(I)=DSTRAN(I)/M
DTSUB=DTIME/M
GO TO 3090
3090 CONTINUE
IF(IDUMP.LT.2) GO TO 3032
WRITE (6,3031) M
3031 FORMAT(’ ‘,//.3X,“NO. OF SUBINCREMENTS = ‘,13,//)
WRITE(6,3033) DE,DEVPAL
3033 FORMAT(S5X,‘DE = ’,E15.7,1X,’DEVPAL = “,E15.7,/)
3032 CONTINUE
DO 5000 NSUB=1,M

C
C CONSTRUCT C MATRIX
c
DNUM1=SIGDOT1*EPSPDOT1+SIGDOT2*EPSPDOT2+
1 SIGDOT3*EPSPDOT3+SIGDOT4*EPSPDOT4
DENOM1=EPSPDOT 1 **2+EPSPDOT2**2+EPSPDOT3**2+EPSPDOT4**2
IF(INCR.EQ.1) GO TO 334
GO TO 335
c
C ELASTIC CASE
c
334 CONTINUE
C(1,1)=D11
c(1,2)=D12
€(1,3)=0.0

c(2,1)=C(1,2)

c(2,2)=c(1,1)

€(2,3)=0.0

c(3,1)=0.0

C(3,2)=0.0

C(3,3)=D44

IF(IPC.EQ.1) GO TO 9999
DSTRES(1)=D11*DSTRAN(1)+D12*DSTRAN(2)
DSTRES(2)=D12*DSTRAN(1)+D11*DSTRAN(2)
DSTRES(3)=D44*DSTRAN(3)
DSTRES(4)=D12*(DSTRAN( 1)+DSTRAN(2))
SIGDOT1=DSTRES(1)/DTSUB
SIGDOT2=DSTRES(2)/DTSUB
SIGDOT3=DSTRES(3)/DTSUB



c
C
C

C
C
C

C
C
C

SIGDOT4=DSTRES(4)/DTSUB
UPDATE TOTAL STRESS AND STRAIN

DO 1050 I=1,3
STRESS(I)=STRESS(I)+DSTRES(I)

1050 STRAIN(I)=DSTRAN(I)+STRAIN(I)
STRESS(4)=STRESS(4)+DSTRES(4)
GO TO 5000

335 CONTINUE

ELASTIC-PLASTIC CASE

DFDS(1)=2.*(STRESS(1)-ALPHA(1,J))-STRESS(2)+ALPHA(2,U)
1 -STRESS(4)+ALPHA(4,J)

DFDS(2)=2 . *(STRESS(2)-ALPHA(2,J))}-STRESS(1)+ALPHA(1,U)
1 -STRESS(4)+ALPHA(4,J)
DFDS(3)=2.*(STRESS(4)-ALPHA(4,J))-STRESS(1)+ALPHA(1,U)
1 ~-STRESS(2)+ALPHA(2,4)

DFDS(4)=0.

DFDS(5)=0.

DFDS(6)=6.*(STRESS(3)-ALPHA(3,d))
DDFDS(1)=D11*DFDS{1)+D12*DFDS(2)+D12*DFDS(3)
DDFDS(2)=D12*DFDS(1)+D11*DFDS(2)+D12*DFDS(3)
DDFDS(3)=D12*DFDS(1)+D12*DFDS(2)+D11*DFDS(3)
DDFDS(4)=D44*DFDS(4)

DDFDS(5)=D44*DFDS(5)

DDFDS(6)=D44*DFDS(6)
SDFDS=DFDS(1)**2+DFDS(2)**2+DFDS(3)**2+DFDS(4)**2+DFDS(5)**2

1 +DFDS(6)**2
DFODF=DDFDS(1)*DFDS(1)+DDFDS(2)*DFDS(2)+DDFDS(3)*DFDS(3)
1 +DDFDS(4)*DFDS(4)+DDFDS(5)*DFDS(5)+DDFDS(6)*DFDS(6)

IF(DABS(DENOM1) .LT.1.D-20) GO TO 332
HPRIME=DNUM1/DENOM1
GO TO 333
332 HPRIME=1.0D25
333 CONTINUE
DENOM=HPRIME*SDFDS+DFDDF
C11=D11-DDFDS(1)*DDFDS( 1)/DENOM
C12=D12-DDFDS( 1) *DDFDS(2)/DENOM
C13=D12-DDFDS(1)*DDFDS(3)/DENOM
C14=-DDFDS(1)*DDFDS(4)/DENOM
C15=-DDFDS(1}*DDFDS(5)/DENOM
C16=-DDFDS(1)*DDFDS(6)/DENOM
C22=D11-DDFDS(2)**2/DENOM
C23=D12-DDFDS(2)*DDFDS(3)/DENOM
C24=-DDFDS(2)*DDFDS(4)/DENOM
C25=-DDFDS(2)*DDFDS(5S)/DENOM
C26=-DDFDS(2)*DDFDS(6)/DENOM
C33=D11-DDFDS(3)**2/DENOM
C34=-DDFDS(3)*DDFDS(4)/DENOM
C35=-DDFDS(3)*DDFDS(5)/DENOM
C36=-DDFDS(3)*DDFDS(6)/DENOM
C44=D44-DDFDS(4)**2/DENOM
C45=-DDFDS(4)*DDFDS(5)/DENOM
C46=-DDFDS(4)*DDFDS(6)/DENOM
C55=D44-DDFDS(5) **2/DENOM
C56=-DDFDS(5)*DDFDS(6)/DENOM
C66=D44-DDFDS(6)**2/DENOM
c(1,1)=C11
c(1,2)=Cc1i2
c(1,3)=Ci6
c(2,1)=Cc(1,2)
c(2,2)=cCc22
Cc(2,3)=C26
Cc(3,1)=C(1,3)
C(3,2)=C(2,3)
Cc(3,3)=Cce6
IF(IPC.EQ.1) GO TO 9999
IF(IDUMP.LT.2) GO TO 557
WRITE(6,4228) (DSTRAN(I),I=1,4)
4228 FORMAT(SX,’DSTRAN = ‘,4E12.4)
557 CONTINUE

CALCULATE STRESS SUBINCREMENT

DSTRES(1)=C11*DSTRAN(1)+C12*DSTRAN(2)+C16*DSTRAN(3)
DSTRES(2)=C12*DSTRAN(1)+C22*DSTRAN(2)+C26*DSTRAN(3)
DSTRES(3)=C16*DSTRAN(1)+C26*DSTRAN(2)+C66*DSTRAN(3)
DSTRES(4)=C13*DSTRAN(1)+C23*DSTRAN(2)+C36*DSTRAN(3)



SIGDOT 1=DSTRES(1)/DTSUB
SIGDOT2=DSTRES(2)/DTSUB
SIGDOT3=DSTRES(3)/DTSUB
SIGDOT4=DSTRES(4)/DTSUB

c

C CALCULATE DEVIATORIC STRESS TENSOR

c
SKK=STRESS(1)+STRESS(2)+STRESS(4)
SD1=STRESS(1)-SKK/3.
SD2=STRESS(2)-SKK/3.
SD3=STRESS(3)
SD4=STRESS(4)-SKK/3.
SMA1=SD1-ALPHA(1,J)
SMA2=SD2-ALPHA(2,J)
SMA3=SD3-ALPHA(3,J)
SMA4=SD4-ALPHA(4,J)
SIGEFF=(1.5*(SMA1**24SMA2**2+SMAZ**2+SMA4**2 ) ) x*(Q 5§

c

C UPDATE INTERNAL VARIABLES

C USING EULER INTEGRATION

c

c

C FIRST CALCULATE PLASTIC STRAIN RATE

c
IF(DABS(SIGEFF).LE.1.0D-8) GO TO 301
IF(DABS(SIGBAR(J)).LE.1.0D-8) GO TO 301
FAC4=-QS*4.184/0.6/8.314/TMELT
THETA=DEXP(FAC4*(DLOG(O.6*TMELT/TEMP)+1.))

BTHETA=B1*THETA
EPSBDOT=BTHETA*(DSINH( (SIGEFF/D)**1.5))**RN
FAC=1.5*(EPSBDOT/SIGEFF)
EPSDOT1=FAC*SMA 1
EPSDOT2=FAC*SMA2
EPSDOT3=FAC*SMA3
EPSDOT4=FAC*SMA4
GO TO 305
301 EPSBDOT=0.
EPSDOT 1=0.
EPSDOT2=0.
EPSDOT3=0.
EPSDOT4=0.
305 CONTINUE
c
C NEXT CALCULATE BACK STRESS RATE
c
BSIGDOT1=(2./3.)*H{*EPSDOT1
BSIGDOT2=(2./3.)*H1*EPSDOT2
BSIGDOT3=(2./3.)*H{*EPSDOT3
BSIGDOT4=(2./3.)*H{*EPSDOT4
BSIGBAR=((3./2.)*(ALPHA(1,J)**2+ALPHA(2,J)**2+
1 ALPHA(3,U)**2+ALPHA(4,U)**2))**0.5
IF(BSIGBAR.LT.1.0D-7) GO TO 306
FAC1=H1*BTHETA*(DSINH(AA1*BSIGBAR) )**RN/BSIGBAR
BSIGDOT1=BSIGDOT1-FAC1*ALPHA(1,J)
BSIGDOT2=BSIGDOT2-FAC1*ALPHA(2,J)
BSIGDOT3=BSIGDOT3-FAC1*ALPHA(3,dJ)
BSIGDOT4=BSIGDOT4-FAC1*ALPHA(4,J)
306 CONTINUE

FIND DRAG STRESS RATE

[eNeNe!

DDOT=H2*EPSBDOT* (C2+BSIGBAR-(AA2/AA1*D**3))
FAC2=DSINH(AA2*D**3)
IF(DABS(FAC2).LT.1.0D-4) GO TO 307
DDOT=DDOT-H2*C2*BTHETA*FAC2**RN

307 CONTINUE

FINALLY, UPDATE ALL INTERNAL VARIABLES

[eXeoNe]

DEPSP(J, 1)=DEPSP(J, 1)+EPSDOT 1*DTSUB
DEPSP(J,2)=DEPSP(J,2)+EPSDOT2*DTSUB
DEPSP(J,3)=DEPSP(J,3)+EPSDOT3*DTSUB
DEPSP(J,4)=DEPSP(J,4)+EPSDOT4*DTSUB
ALPHA(J, 1)=ALPHA(J, 1)+BSIGDOT1*DTSUB
ALPHA(UJ,2)=ALPHA(J,2)+BSIGDOT2*DTSUB
ALPHA(J,3)=ALPHA(J,3)+BSIGDOT3*DTSUB
ALPHA(J,4)=ALPHA(J,4)+BSIGDOT4*DTSUB
D=D+DDOT*DTSUB

SIGBAR(J)=D



c
C UPDATE TOTAL STRESS AND STRAIN
C
DO 1060 I=1,3
STRESS(I)=STRESS(I)+DSTRES(I)
1060 STRAIN(I)=DSTRAN(I)+STRAIN(I)
STRESS(4)=STRESS(4)+DSTRES(4)
5000 CONTINUE
c
C COMPLETE SUBINCREMENTATION LOOP -
C CALCULATE TOTAL STRESS INCREMENT
c
DO 5001 I=1.4
DSTRES(I)=STRESS(I)-SOLD(I)
5001 DS(J,I1)=DSTRES(I)
C
C CALCULATE TOTAL STRAIN INCREMENT
C
DO 5002 I=1,3
EO(J,1)=E(J,I)
5002 DSTRAN(I)=STRAIN(I)-€EOLD(I)
8999 CONTINUE
RETURN
END



